Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Area Spectral and Energy Efficiency Analysis of Cellular Networks with Cell DTX
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).ORCID iD: 0000-0001-7872-0444
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).
2015 (English)In: IEEE Globecom 2015 , San Diego, December 6th-10th, 2015, IEEE conference proceedings, 2015, p. 1-6Conference paper, Published paper (Refereed)
Abstract [en]

Cell discontinuous transmission (DTX) has been proposed as an effective solution to reduce energy consumption of cellular networks. In this paper, we investigate the impact of network traffic load on area spectral efficiency (ASE) and energy efficiency (EE) of cellular networks with cell DTX. Closedform expressions of ASE and EE as functions of traffic load for cellular networks with cell DTX are derived. It is shown that ASE increases monotonically in traffic load, while EE depends on the power consumption of base stations in sleep mode. If this power consumption is larger than a percentage of the active-mode power consumption, EE increases monotonically with traffic load and is maximized when the network is fully loaded. Otherwise, EE first increases and then decreases in traffic load. In this case, ASE and EE are maximized with different loads. The percentage threshold only depends on the path loss exponent of radio propagation environment and is calculated to be 56.2% when the path loss exponent is 4.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2015. p. 1-6
Keywords [en]
Cellular networks, spectral efficiency, energy efficiency, discontinuous transmission
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Communication Systems
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-179337DOI: 10.1109/GLOCOMW.2015.7414162ISI: 000380457400205Scopus ID: 2-s2.0-84971280259OAI: oai:DiVA.org:kth-179337DiVA, id: diva2:882602
Conference
Workshop on 5G & Beyond – Enabling Technologies and Applications
Note

QC 20160316

Available from: 2015-12-15 Created: 2015-12-15 Last updated: 2018-11-11Bibliographically approved
In thesis
1. Cross-Layer Energy-Efficient Mobile Network Design
Open this publication in new window or tab >>Cross-Layer Energy-Efficient Mobile Network Design
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To assure the sustainable development of mobile networks, it is crucial to improve their energy efficiency. This thesis is devoted to the design of energy-efficient mobile networks. A cross-layer design approach is adopted. The resource management at the MAC layer, the network layer as well as the service layer are optimized to improve the energy efficiency of mobile networks. The problem of optimizing the MAC-layer resource allocation of the downlink transmission in multi-carrier NOMA systems to maximize the system energy efficiency while satisfying users’ QoS requirements is firstly considered. The optimal power allocation across sub-carriers and across users sharing one sub-carrier are proposed. Furthermore, exploiting the structure of the optimal power allocation across users sharing one sub-carrier, a sub-optimal solution for sub-carrier assignment, which greedily minimizes the required power to serve all users with required QoS, is developed. Besides optimizing the channel assignment and power allocation within a single cell, the link scheduling in the multi-cell scenario to deal with inter-cell interference is also studied. A scalable distributed link scheduling solution is proposed to orchestrate the transmission and DTX micro-sleep of multiple base stations such that both the inter-cell interference and the energy consumption are reduced. At the network layer, the operation of base station sleeping is optimized to improve the energy efficiency of mobile networks without deteriorating users’ QoS. The spectral and energy efficiency of mobile networks, where base stations are enabled with DTX, under different traffic load is firstly studied. It shows that as the networks are more loaded, the link spectral efficiency reduces while the network spectral efficiency increases. Regarding the network energy efficiency, it will either firstly increase and then decrease or always increase when the network load gets higher. The optimal network load to maximize the network energy efficiency depends on the power consumption of base stations in DTX sleep mode. Based on the findings of the above study, the joint optimization of cell DTX and deep sleep to maximize the network energy efficiency is investigated. A scaling law of transmit power, which assures that the distribution of the received power remains unchanged as more base stations are switched into deep sleep, is proposed. Then the average resource utilization and overload probability of non-deep-sleep base stations are derived. Based on these results, the feasible range of the percentage of deep-sleep base stations is obtained. Finally, the optimal percentage of deep-sleep base stations to maximize the network energy efficiency while satisfying users’ QoS requirements is derived. Lastly, the service-layer resource provision of edge computing in mobile networks is optimized to improve the energy efficiency. With this work, the trade-offs on service latency and energy consumption between the computation and the communication subsystems are studied. It is shown that the load of the communication subsystem and that of the computation subsystem should be balanced. Increasing the resource of the highly loaded subsystem can significantly reduce the required resource of the other subsystem. An algorithm is proposed to find out the optimal processing speed and the optimal number of active base stations that minimizes the overall energy consumption while assuring the requirements on the mean service latency.

Abstract [sv]

För att säkerställa en hållbar utveckling av framtidens mobilnät är det avgörande att förbättra energieffektiviteten i dem. Denna avhandling ägnas därför åt utformningen av energieffektiva mobilnät. En designmetod över lagren antas, där resurshanteringen i MAC-lagret, nätverkslagret samt servicelagret optimeras för att förbättra energieffektiviteten. Problemet att optimera MAC-lagrets resursallokering i nedlänk i NOMA-system med flera bärare för att maximera systemets energieffektivitet samtidigt som användarnas QoS-krav uppfylls betraktas först. Den optimala effektfördelningen över delbärare och över användare som delar en delbärare föreslås. Genom att utnyttja lösningsstrukturen för den optimala effektallokeringen mellan användare som delar en delbärare, utvecklas en suboptimal lösning för delbärartilldelning, vilket gynnsamt minimerar den behövda effekten för att serva alla användare med erforderlig QoS. Förutom att optimera kanaltilldelningen och effektfördelningen i en enda cell, studeras även länkschemaläggningen i ett flercellsscenario för att hantera mellancellsstörningar. En skalbar och distribuerad lösning för länkschemaläggning föreslås för att orkestrera sändning och DTX-mikrosömn av flera basstationer så att både mellancellsstörningar och energiförbrukning minskas. I nätverkslagret optimeras driften av basstationens sovande för att förbättra mobilnätets energieffektivitet utan att för den delen försämra användarnas QoS. Spektral- och energieffektiviteten i mobilnät där basstationer är aktiverade med DTX studeras först under olika trafikbelastningar. Det visar sig att när nätverksbelastningen ökar, så minskar länkspektraleffektiviteten medan nätverksspektraleffektiviteten ökar. När det gäller nätverksenergieffektiviteten så kommer den antingen att först öka och sedan minska, eller alltid öka i takt med att nätverksbelastningen ökar. Den optimala nätverksbelastningen för att maximera nätverksenergieffektiviteten beror på effektförbrukningen hos basstationer i DTX-viloläge. Baserat på resultaten från ovanstående studie undersöks sedan den kombinerade optimeringen av cell-DTX och djupsömn för att maximera nätverksenergieffektiviteten. En skalningslag för sändningseffekt föreslås som säkerställer att fördelningen av den mottagna effekten förblir oförändrad när fler basstationer kopplas om till djupsömn. Genomsnittliga resursutnyttjandet och överbelastningssannolikheten för basstationer som ej är i djupsömnläge härleds också. Baserat på dessa resultat erhålls ett möjligt intervall på andelen basstationer i djupsömnläge. Slutligen härleds den optimala andelen basstationer i djupsömnläge för att maximera nätverksenergieffektiviteten samtidigt som användarnas QoS-krav uppfylls. Till sist optimeras resurstilldelningen i tjänstelagret för kantnodsberäkning (eng. edge computing), i syfte att förbättra energieffektiviteten i mobilnäten. Vi studerar avvägningen mellan servicefördröjning och energiförbrukning i beräknings- och kommunikationsdelsystemen, och visar att belastningen i delsystemen bör balanseras. Att öka resurserna hos det högt belastade delsystemet kan avsevärt minska resurserna för andra delsystem. En algoritm föreslås för att ta reda på den optimala beräkningshastigheten och optimala antalet aktiva basstationer som minimerar den totala energiförbrukningen samtidigt som kraven på genomsnittlig servicefördröjning säkerställs.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 70
Series
TRITA-EECS-AVL ; 2018:80
Keywords
green mobile networks, energy efficiency, base station sleeping, resource allocation, mobile edge computing, interference coordination, NOMA, gröna mobilnätverk, energieffektivitet, basstationssömn, resursallokering, mobil kantnodsberäkning, störningssamordning
National Category
Telecommunications
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-238790 (URN)978-91-7729-989-9 (ISBN)
Public defence
2018-11-30, Sal C (Sal Sven-Olof Öhrvik), Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista, 13:00 (English)
Opponent
Supervisors
Note

QC 20181112

Available from: 2018-11-12 Created: 2018-11-11 Last updated: 2018-11-12Bibliographically approved

Open Access in DiVA

fulltext(379 kB)245 downloads
File information
File name FULLTEXT01.pdfFile size 379 kBChecksum SHA-512
be128ce65c606381ab1fa0c665c26ae8f138441a2977d4ca8f8130f6b23540f3067a870f898739608de1e7621170ba0eef51420fecc9bbcc81ae5566fad66fdc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusIEEEXplore

Authority records BETA

Chang, Peiliang

Search in DiVA

By author/editor
Chang, PeiliangMiao, Guowang
By organisation
Radio Systems Laboratory (RS Lab)
Electrical Engineering, Electronic Engineering, Information EngineeringCommunication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 245 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 159 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf