Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Fully Automated Motion Capture of Signs -- Development and Evaluation of a Key Word Signing Avatar
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Tal-kommunikation.ORCID-id: 0000-0002-7801-7617
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Tal-kommunikation.ORCID-id: 0000-0003-1399-6604
2015 (Engelska)Ingår i: ACM Transactions on Accessible Computing, ISSN 1936-7228, Vol. 7, nr 2, s. 7:1-7:17Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motion capture of signs provides unique challenges in the field of multimodal data collection. The dense packaging of visual information requires high fidelity and high bandwidth of the captured data. Even though marker-based optical motion capture provides many desirable features such as high accuracy, global fitting, and the ability to record body and face simultaneously, it is not widely used to record finger motion, especially not for articulated and syntactic motion such as signs. Instead, most signing avatar projects use costly instrumented gloves, which require long calibration procedures. In this article, we evaluate the data quality obtained from optical motion capture of isolated signs from Swedish sign language with a large number of low-cost cameras. We also present a novel dual-sensor approach to combine the data with low-cost, five-sensor instrumented gloves to provide a recording method with low manual postprocessing. Finally, we evaluate the collected data and the dual-sensor approach as transferred to a highly stylized avatar. The application of the avatar is a game-based environment for training Key Word Signing (KWS) as augmented and alternative communication (AAC), intended for children with communication disabilities.

Ort, förlag, år, upplaga, sidor
New York, NY, USA: Association for Computing Machinery (ACM), 2015. Vol. 7, nr 2, s. 7:1-7:17
Nyckelord [en]
Augmentative and alternative communication (AAC), Motion capture, Sign language, Virtual characters
Nationell ämneskategori
Datavetenskap (datalogi) Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:kth:diva-180427DOI: 10.1145/2764918ISI: 000360070800004Scopus ID: 2-s2.0-84935145760OAI: oai:DiVA.org:kth-180427DiVA, id: diva2:893708
Anmärkning

 QC 2016-01-13

Tillgänglig från: 2016-01-13 Skapad: 2016-01-13 Senast uppdaterad: 2018-01-10Bibliografiskt granskad
Ingår i avhandling
1. Performance, Processing and Perception of Communicative Motion for Avatars and Agents
Öppna denna publikation i ny flik eller fönster >>Performance, Processing and Perception of Communicative Motion for Avatars and Agents
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Artificial agents and avatars are designed with a large variety of face and body configurations. Some of these (such as virtual characters in films) may be highly realistic and human-like, while others (such as social robots) have considerably more limited expressive means. In both cases, human motion serves as the model and inspiration for the non-verbal behavior displayed. This thesis focuses on increasing the expressive capacities of artificial agents and avatars using two main strategies: 1) improving the automatic capturing of the most communicative areas for human communication, namely the face and the fingers, and 2) increasing communication clarity by proposing novel ways of eliciting clear and readable non-verbal behavior.

The first part of the thesis covers automatic methods for capturing and processing motion data. In paper A, we propose a novel dual sensor method for capturing hands and fingers using optical motion capture in combination with low-cost instrumented gloves. The approach circumvents the main problems with marker-based systems and glove-based systems, and it is demonstrated and evaluated on a key-word signing avatar. In paper B, we propose a robust method for automatic labeling of sparse, non-rigid motion capture marker sets, and we evaluate it on a variety of marker configurations for finger and facial capture. In paper C, we propose an automatic method for annotating hand gestures using Hierarchical Hidden Markov Models (HHMMs).

The second part of the thesis covers studies on creating and evaluating multimodal databases with clear and exaggerated motion. The main idea is that this type of motion is appropriate for agents under certain communicative situations (such as noisy environments) or for agents with reduced expressive degrees of freedom (such as humanoid robots). In paper D, we record motion capture data for a virtual talking head with variable articulation style (normal-to-over articulated). In paper E, we use techniques from mime acting to generate clear non-verbal expressions custom tailored for three agent embodiments (face-and-body, face-only and body-only).

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2017. s. 73
Serie
TRITA-CSC-A, ISSN 1653-5723 ; 24
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
Tal- och musikkommunikation
Identifikatorer
urn:nbn:se:kth:diva-218272 (URN)978-91-7729-608-9 (ISBN)
Disputation
2017-12-15, F3, Lindstedtsvägen 26, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20171127

Tillgänglig från: 2017-11-27 Skapad: 2017-11-24 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alexanderson, SimonBeskow, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Alexanderson, SimonBeskow, Jonas
Av organisationen
Tal-kommunikation
Datavetenskap (datalogi)Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 670 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf