Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantum error correction
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Kvantelektronik och -optik, QEO.ORCID-id: 0000-0002-8721-3580
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Quantum error correction is the art of protecting quantum states from the detrimental influence from the environment. To master this art, one must understand how the system interacts with the environment and gives rise to a full set of quantum phenomena, many of which have no correspondence in classical information theory. Such phenomena include decoherence, an effect that in general destroys superpositions of pure states as a consequence of entanglement with the environment. But decoherence can also be understood as “information leakage”, i.e., when knowledge of an encoded code block is transferred to the environment. In this event, the block’s information or entanglement content is typically lost.

In a typical scenario, however, not all types of destructive events are likely to occur, but only those allowed by the information carrier, the type of interaction with the environment, and how the environment “picks up” information of the error events. These characteristics can be incorporated into a code, i.e., a channel-adapted quantum error-correcting code.

Often, it is assumed that the environment’s ability to distinguish between error events is small, and I will denote such environments “memory-less”. But this assumption is not always valid, since the ability to distinguish error events is related to the temperature of the environment, and in the particular case of information coded onto photons, kBTR «ℏω typically holds, and one must then assume that the environment has a “memory”. In the thesis I describe a short quantum error-correction code adapted for photons interacting with a “cold” reservoir, i.e., a reservoir which continuously probes what error occurred in the coded state.

I also study other types of environments, and show how to distill meaningful figures of merit from codes adapted for these channels, as it turns out that resource-based figures reflecting both information and entanglement can be calculated exactly for a well-studied class of channels: the Pauli channels. Starting from these resource-based figures, I establish the notion of efficiency and quality and show that there will be a trade-off between efficiency and quality for short codes. Finally I show how to incorporate, into these calculations, the choices one has to make when handling quantum states that have been detected as incorrect, but where no prospect of correcting them exists, i.e., so-called detection errors.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2016. , s. xxiv, 144
Serie
TRITA-FYS, ISSN 0280-316X ; 2015:84
HSV kategori
Forskningsprogram
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-180533ISBN: 978-91-7595-820-0 (tryckt)OAI: oai:DiVA.org:kth-180533DiVA, id: diva2:894450
Disputas
2016-01-29, Sal FA32, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 14:00 (engelsk)
Opponent
Veileder
Merknad

QC 20160115

Tilgjengelig fra: 2016-01-15 Laget: 2016-01-15 Sist oppdatert: 2016-02-02bibliografisk kontrollert
Delarbeid
1. A short and efficient error correcting code for polarization coded photonic qubits in a dissipative channel
Åpne denne publikasjonen i ny fane eller vindu >>A short and efficient error correcting code for polarization coded photonic qubits in a dissipative channel
2011 (engelsk)Inngår i: Optics Communications, ISSN 0030-4018, E-ISSN 1873-0310, Vol. 284, nr 1, s. 550-554Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We propose a short and efficient non-degenerate quantum error correcting code that is adapted for qubits encoded on two orthogonal, single-photon states (e.g., horizontally and vertically polarized) subject to a dissipative channel. The proposed code draws its strength from the fact that it is adapted to the physical characteristics of the information-carrying basis states under the action of the channel. The code combines different energy manifolds and consists of only 3 spatio-temporal modes and on average 2 photons per code word.

Emneord
Quantum error correcting code, Photonic qubit, Dissipative channel
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-30519 (URN)10.1016/j.optcom.2010.09.006 (DOI)000285893200100 ()2-s2.0-78649652279 (Scopus ID)
Merknad
QC 20110304Tilgjengelig fra: 2011-03-04 Laget: 2011-02-28 Sist oppdatert: 2017-12-11bibliografisk kontrollert
2. Fidelity as a figure of merit in quantum error correction
Åpne denne publikasjonen i ny fane eller vindu >>Fidelity as a figure of merit in quantum error correction
2013 (engelsk)Inngår i: Quantum information & computation, ISSN 1533-7146, Vol. 13, nr 1-2, s. 0009-0020Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We discuss the fidelity as a figure of merit in quantum error correction schemes. We show that when identifiable but uncorrectable errors occur as a result of the action of the channel, a common strategy that improves the fidelity actually decreases the transmitted mutual information. The conclusion is that while the fidelity is simple to calculate and therefore often used, it is perhaps not always a recommendable figure of merit for quantum error correction. The reason is that while it roughly speaking encourages optimisation of the "mean probability of success", it gives no incentive for a protocol to indicate exactly where the errors lurk. For small error probabilities, the latter information is more important for the integrity of the information than optimising the mean probability of success.

Emneord
Fidelity, Mutual information, Quantum error correction
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-107042 (URN)000315304700002 ()2-s2.0-84871693736 (Scopus ID)
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20130205. Updated from accepted to published.

Tilgjengelig fra: 2012-12-06 Laget: 2012-12-06 Sist oppdatert: 2017-12-07bibliografisk kontrollert
3. On the efficiency of quantum error correction codes for the depolarising channel
Åpne denne publikasjonen i ny fane eller vindu >>On the efficiency of quantum error correction codes for the depolarising channel
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Identifikatorer
urn:nbn:se:kth:diva-180531 (URN)
Merknad

QS 2016

Tilgjengelig fra: 2016-01-15 Laget: 2016-01-15 Sist oppdatert: 2016-01-15bibliografisk kontrollert

Open Access i DiVA

Thesis(2106 kB)445 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2106 kBChecksum SHA-512
9c177790227c10289fd5abb4ad08e51005ac60209cff6d4630e46f8e493bf12c8d7ed7e859f97d340303e53966f3df9dc916c9a5656daa4c007137663ba23745
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Almlöf, Jonas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 445 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1258 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf