Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of TurboSwirl Structure on an Uphill Teeming Ingot Casting Process
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad processmetallurgi.
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad processmetallurgi.
2015 (Engelska)Ingår i: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 46, nr 6, s. 2652-2665Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

To produce high-quality ingot cast steel with a better surface quality, it would be beneficial for the uphill teeming process if a much more stable flow pattern could be achieved in the runners. Several techniques have been utilized in the industry to try to obtain a stable flow of liquid steel, such as a swirling flow. Some research has indicated that a swirl blade inserted in the horizontal and vertical runners, or some other additional devices and physics could generate a swirling flow in order to give a lower hump height, avoid mold flux entrapment, and improve the quality of the ingot products, and a new swirling flow generation component, TurboSwirl, was introduced to improve the flow pattern. It has recently been demonstrated that the TurboSwirl method can effectively reduce the risk of mold flux entrapment, lower the maximum wall shear stress, and decrease velocity fluctuations. The TurboSwirl is built at the elbow of the runners as a connection between the horizontal and vertical runners. It is located near the mold and it generates a tangential flow that can be used with a divergent nozzle in order to decrease the axial velocity of the vertical flow into the mold. This stabilizes flow before the fluid enters the mold. However, high wall shear stresses develop at the walls due to the fierce rotation in the TurboSwirl. In order to achieve a calmer flow and to protect the refractory wall, some structural improvements have been made. It was found that by changing the flaring angle of the divergent nozzle, it was possible to lower the axial velocity and wall shear stress. Moreover, when the vertical runner and the divergent nozzle were not placed at the center of the TurboSwirl, quite different flow patterns could be obtained to meet to different requirements. In addition, the swirl numbers of all the cases mentioned above were calculated to ensure that the swirling flow was strong enough to generate a swirling flow of the liquid steel in the TurboSwirl.

Ort, förlag, år, upplaga, sidor
Springer, 2015. Vol. 46, nr 6, s. 2652-2665
Nyckelord [en]
SWIRLING FLOW, IMMERSION NOZZLE, FLUID-FLOW, MOLD, PATTERN, BLADE, GENERATOR, TUNDISH. DESIGN
Nationell ämneskategori
Metallurgi och metalliska material
Identifikatorer
URN: urn:nbn:se:kth:diva-180621DOI: 10.1007/s11663-015-0445-4ISI: 000367067600027Scopus ID: 2-s2.0-84946489524OAI: oai:DiVA.org:kth-180621DiVA, id: diva2:896093
Anmärkning

QC 20160120

Tillgänglig från: 2016-01-20 Skapad: 2016-01-19 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Ingår i avhandling
1. A Study of the Swirling Flow Pattern when Using TurboSwirl in the Casting Process
Öppna denna publikation i ny flik eller fönster >>A Study of the Swirling Flow Pattern when Using TurboSwirl in the Casting Process
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The use of a swirling flow can provide a more uniform velocity distribution and a calmer filling condition according to previous studies of both ingot and continuous casting processes of steel. However, the existing swirling flow generation methods developed in last decades all have some limitations. Recently, a new swirling flow generator, the TurboSwirl device, was proposed. In this work, the convergent nozzle was studied with different angles. The maximum wall shear stress can be reduced by changing the convergent angle between 40º and 60º to obtain a higher swirl intensity. Also, a lower maximum axial velocity can be obtained with a smaller convergent angle. Furthermore, the maximum axial velocity and wall shear stress can also be affected by moving the location of the vertical runner. A water model experiment was carried out to verify the simulation results of the effect of the convergent angle on the swirling flow pattern. The shape of the air-core vortex in the water model experiment could only be accurately simulated by using the Reynolds Stress Model (RSM). The simulation results were also validated by the measured radial velocity in the vertical runner by the ultrasonic velocity profiler (UVP). The TurboSwirl was reversed and connected to a traditional SEN to generate the swirling flow. The periodic characteristic of the swirling flow and asymmetry flow pattern were observed in both the simulated and measured results. The detached eddy simulation (DES) turbulence model was used to catch the time-dependent flow pattern and the predicted results agree well with measured axial and tangential velocities. This new design of the SEN with the reverse TurboSwirl could provide an almost equivalent strength of the swirling flow generated by an electromagnetic swirling flow generator. It can also reduce the downward axial velocities in the center of the SEN outlet and obtain a calmer meniscus and internal flow in the mold.

Abstract [sv]

Tidigare studier visar att ett roterande flöde kan ge en mer likformig hastighetsfördelning och en lugnare fyllning i både göt- och stränggjutning av stål. De befintliga metoderna för att generera ett roterande flöde har vissa begränsningar. En ny metod för att generera det roterande flödet, en så kallad TurboSwirl, föreslogs nyligen. I detta arbete undersöktes ett konvergent munstycke med olika vinklar för att se hur detta påverkade det roterande flödet som genererades i anordningen. Resultaten visar att skjuvspänningen i systemet kan reduceras genom att ändra munstyckets vinkel mellan 40º till 60º. En lägre maximal axiell hastighet kan också uppnås med en mindre konvergent vinkel på munstycket. Det är även möjligt att påverka den maximala axiella hastigheten och skjuvspänningen i systemet genom att förflytta den vertikala kanalen i anordningen. Vattenmodellexperiment har utförts för att validera simuleringsresultaten. Det kraftigt roterande flödet kunde endast beskrivas väl av Reynolds Stress Model (RSM). Validering utfördes också genom att mäta den radiella hastigheten i den vertikala kanalen med en Ultrasonic Velocity Profiler (UVP). TurboSwirl-anordningen vändes och kopplades till gjutröret för att generera det roterande flödet. Detta studerades både med numeriska modeller och med vattenmodellering. Ett periodiskt asymmetriskt roterande flöde observerades både i numeriska modellerna och i vattenmodellerna. För att modellera detta periodiska flöde så användes detached eddy simulation (DES) modellen. Resultaten då denna modell användes stämmer väl med de experimentella mätningarna. Denna nya design med TurboSwirl kan uppnå liknande styrka på det roterande flödet som när elektromagnetisk omrörning användes. Det resulterande roterande flödet leder till en lägre axiell hastighet i gjutröret samt en lugnare yta och ett lugnare flöde i kokillen.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. 70
Nyckelord
flow pattern, swirling flow, TurboSwirl, CFD, turbulence models, water model, flödesmönster, roterandeflöde, TurboSwirl, CFD, turbulensmodeller, vattenmodell
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Metallurgisk processvetenskap
Identifikatorer
urn:nbn:se:kth:diva-196806 (URN)978-91-7729-211-1 (ISBN)
Disputation
2016-12-16, M311, Brinellvägen 68, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20161123

Tillgänglig från: 2016-11-23 Skapad: 2016-11-22 Senast uppdaterad: 2016-11-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Bai, HaitongErsson, MikaelJonsson, Par
Av organisationen
MaterialvetenskapTillämpad processmetallurgi
I samma tidskrift
Metallurgical and materials transactions. B, process metallurgy and materials processing science
Metallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 368 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf