Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Personalized Cardiovascular Disease Prediction and Treatment-A Review of Existing Strategies and Novel Systems Medicine Tools
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi. Chalmers University, Sweden.
2016 (engelsk)Inngår i: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 7, artikkel-id 2Artikkel, forskningsoversikt (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach toward a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches.

sted, utgiver, år, opplag, sider
Frontiers Media , 2016. Vol. 7, artikkel-id 2
Emneord [en]
patient stratification, risk estimation, metabolism, systems medicine, systems biology, network medicine
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-182148DOI: 10.3389/fphys.2016.00002ISI: 000368587200001Scopus ID: 2-s2.0-84962649780OAI: oai:DiVA.org:kth-182148DiVA, id: diva2:904968
Forskningsfinansiär
Science for Life Laboratory - a national resource center for high-throughput molecular bioscienceNovo NordiskEU, FP7, Seventh Framework Programme, HEALTH-F4-2012-305312/METACARDISKnut and Alice Wallenberg Foundation
Merknad

QC 20160220

Tilgjengelig fra: 2016-02-20 Laget: 2016-02-16 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Mardinoglu, Adil
Av organisasjonen
I samme tidsskrift
Frontiers in Physiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 159 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf