Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD WITH IMPROVED CONTROL OVER THE MODELING ERROR
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.). KTH, Centra, SeRC - Swedish e-Science Research Centre.
2016 (engelsk)Inngår i: Communications in Mathematical Sciences, ISSN 1539-6746, E-ISSN 1945-0796, Vol. 14, nr 2, s. 463-487Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Multiscale partial differential equations (PDEs) are difficult to solve by traditional numerical methods due to the need to resolve the small wavelengths in the media over the entire computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method (FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic, and hyperbolic type. Typical multiscale methods require a coupling between a micro and a macro model. Inspired from the homogenization theory, traditional FE-HMM schemes use elliptic PDEs as the micro model. We use, however, the second order wave equation as our micro model independent of the type of the problem on the macro level. This allows us to control the modeling error originating from the coupling between the different scales. In a spatially fully discrete a priori error analysis we prove that the modeling error can be made arbitrarily small for periodic media, even if we do not know the exact period of the oscillations in the media. We provide numerical examples in one and two dimensions confirming the theoretical results. Further examples show that the method captures the effective solutions in general non-periodic settings as well.

sted, utgiver, år, opplag, sider
International Press of Boston , 2016. Vol. 14, nr 2, s. 463-487
Emneord [en]
Multiscale method, homogenization, partial differential equations, modeling error
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-182863DOI: 10.4310/CMS.2016.v14.n2.a7ISI: 000368314700007Scopus ID: 2-s2.0-84959260210OAI: oai:DiVA.org:kth-182863DiVA, id: diva2:906506
Merknad

QC 20160224

Tilgjengelig fra: 2016-02-24 Laget: 2016-02-23 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Arjmand, Doghonay
Av organisasjonen
I samme tidsskrift
Communications in Mathematical Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 209 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf