Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD WITH IMPROVED CONTROL OVER THE MODELING ERROR
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.). KTH, Centra, SeRC - Swedish e-Science Research Centre.
2016 (Engelska)Ingår i: Communications in Mathematical Sciences, ISSN 1539-6746, E-ISSN 1945-0796, Vol. 14, nr 2, s. 463-487Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Multiscale partial differential equations (PDEs) are difficult to solve by traditional numerical methods due to the need to resolve the small wavelengths in the media over the entire computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method (FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic, and hyperbolic type. Typical multiscale methods require a coupling between a micro and a macro model. Inspired from the homogenization theory, traditional FE-HMM schemes use elliptic PDEs as the micro model. We use, however, the second order wave equation as our micro model independent of the type of the problem on the macro level. This allows us to control the modeling error originating from the coupling between the different scales. In a spatially fully discrete a priori error analysis we prove that the modeling error can be made arbitrarily small for periodic media, even if we do not know the exact period of the oscillations in the media. We provide numerical examples in one and two dimensions confirming the theoretical results. Further examples show that the method captures the effective solutions in general non-periodic settings as well.

Ort, förlag, år, upplaga, sidor
International Press of Boston , 2016. Vol. 14, nr 2, s. 463-487
Nyckelord [en]
Multiscale method, homogenization, partial differential equations, modeling error
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-182863DOI: 10.4310/CMS.2016.v14.n2.a7ISI: 000368314700007Scopus ID: 2-s2.0-84959260210OAI: oai:DiVA.org:kth-182863DiVA, id: diva2:906506
Anmärkning

QC 20160224

Tillgänglig från: 2016-02-24 Skapad: 2016-02-23 Senast uppdaterad: 2017-11-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Arjmand, Doghonay
Av organisationen
Matematik (Inst.)SeRC - Swedish e-Science Research Centre
I samma tidskrift
Communications in Mathematical Sciences
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 203 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf