Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Neuronal Subtypes in the Striatum and the Effect of Neuronal Heterogeneity on the Activity Dynamics
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). KTH. (Computational biology)
2016 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Klassificering av neuronala subtyper i striatum och effekten av neuronal heterogenitet på aktivitetsdynamiken (svensk)
Abstract [en]

Clustering of single-cell RNA sequencing data is often used to show what states and subtypes cells have. Using this technique, striatal cells were clustered into subtypes using different clustering algorithms. Previously known subtypes were confirmed and new subtypes were found. One of them is a third medium spiny neuron subtype. Using the observed heterogeneity, as a second task, this project questions whether or not differences in individual neurons have an impact on the network dynamics. By clustering spiking activity from a neural network model, inconclusive results were found. Both algorithms indicating low heterogeneity, but by altering the quantity of a subtype between a low and high number, and clustering the network activity in each case, results indicate that there is an increase in the heterogeneity. This project shows a list of potential striatal subtypes and gives reasons to keep giving attention to biologically observed heterogeneity.

sted, utgiver, år, opplag, sider
2016. , s. 59
Emneord [en]
Computational neuroscience, Striatum, Single-cell sequencing, Medium spiny neuron
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-183135OAI: oai:DiVA.org:kth-183135DiVA, id: diva2:908105
Eksternt samarbeid
Karolinska institutet
Fag / kurs
Biomedical Engineering
Utdanningsprogram
Master of Science - Machine Learning
Veileder
Examiner
Tilgjengelig fra: 2016-03-02 Laget: 2016-03-01 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

fulltext(2478 kB)294 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2478 kBChecksum SHA-512
104231905feee12b536a7fc39395a22ed9e8e64310097242f95b221b6afaf0616232258bf2d73d5998cc7db6767fb4fa7ffb70ceae1f0c3a2fa171aec3971d42
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 294 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 801 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf