kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluating bulk Nb2O2F3 for Li-battery electrode applications
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Uppsala universitet, Sweden.ORCID iD: 0000-0003-1231-9994
2016 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 5, p. 3530-3535Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

This investigation has the primary objective of elucidating the lithium intercalation process in the crystal structure of a new niobium oxyfluoride compound Nb2O2F3. The framework of the density functional theory was applied in a generalized gradient approximation together with the hybrid functional method. It is revealed that lithium atoms intercalate in this material in a maximum concentration of one Li atom per formula unit forming LiNb2O2F3. Moreover, octahedral positions in between the layers of Nb-O-F appear as the Li preferred occupancy resulting in a structural volume expansion of only 5%. Electronic structure evolution with the insertion of lithium displays a transformation from semi-conductor to metal when half of the lithium atoms are added. This transformation occurs due to a symmetry break induced by the transition from the + 8 to + 7 oxidation state of half of the Nb2 dimers. Then, after full lithiation the symmetry is recovered and the material becomes a semiconductor again with a band gap amounting to 1 eV. The evaluated average deintercalation potential reaches 1.29 V vs. Li/Li+ with activation energy for lithium ion migration of 0.79 eV. The computed low potential of the redox reaction Nb-2(8+) to Nb-2(7+) includes niobium oxyfluoride in the map of possible materials for the anode application of Li-ion batteries.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 18, no 5, p. 3530-3535
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-183191DOI: 10.1039/c5cp06829kISI: 000369508100020PubMedID: 26751421Scopus ID: 2-s2.0-84956939620OAI: oai:DiVA.org:kth-183191DiVA, id: diva2:908924
Funder
Swedish Research CouncilStandUp
Note

QC 20160303

Available from: 2016-03-03 Created: 2016-03-03 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Ahuja, Rajeev

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 373 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf