Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation of a suspended droplet under evaporation with Marangoni effects
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik.
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik.ORCID-id: 0000-0003-3336-1462
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik.ORCID-id: 0000-0003-2830-0454
2016 (engelsk)Inngår i: International Journal of Heat and Mass Transfer, ISSN 0017-9310, E-ISSN 1879-2189, Vol. 91, s. 853-860Artikkel i tidsskrift, Editorial material (Fagfellevurdert) Published
Abstract [en]

We investigate the Marangoni effects in a hexane droplet under evaporation and close to its critical point. A lattice Boltzmann model is used to perform 3D numerical simulations. In a first case, the droplet is placed in its own vapor and a temperature gradient is imposed. The droplet locomotion through the domain is observed, where the temperature differences across the surface is proportional to the droplet velocity and the Marangoni effect is confirmed. The droplet is then set under a forced convection condition. The results show that the Marangoni stresses play a major role in maintaining the internal circulation when the superheated vapor temperature is increased. Surprisingly, surface tension variations along the interface due to temperature change may affect heat transfer and internal circulation even for low Weber number. Other results and considerations regarding the droplet surface are also discussed.

sted, utgiver, år, opplag, sider
Elsevier, 2016. Vol. 91, s. 853-860
Emneord [en]
Phase change, Internal circulation, Lattice Boltzmann method, Droplet heating
HSV kategori
Forskningsprogram
Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:kth:diva-183482DOI: 10.1016/j.ijheatmasstransfer.2016.02.073ISI: 000374616900082Scopus ID: 2-s2.0-84960872136OAI: oai:DiVA.org:kth-183482DiVA, id: diva2:911695
Forskningsfinansiär
Swedish Research Council, 2010-3938Swedish Research Council, 2011-5355
Merknad

QC 20160314

Tilgjengelig fra: 2016-03-14 Laget: 2016-03-14 Sist oppdatert: 2017-11-30bibliografisk kontrollert
Inngår i avhandling
1. Phase change, surface tension and turbulence in real fluids
Åpne denne publikasjonen i ny fane eller vindu >>Phase change, surface tension and turbulence in real fluids
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Sprays are extensively used in industry, especially for fuels in internal combustion and gas turbine engines. An optimal fuel/air mixture prior to combustion is desired for these applications, leading to greater efficiency and minimal levels of emissions. The optimization depends on details regarding the different breakups, evaporation and mixing processes. Besides, one should take into consideration that these different steps depend on physical properties of the gas and fuel, such as density, viscosity, heat conductivity and surface tension.

In this thesis the phase change and surface tension of a droplet for different flow conditions are studied by means of numerical simulations.This work is part of a larger effort aiming to developing models for sprays in turbulent flows. We are especially interested in the atomization regime, where the liquid breakup causes the formation of droplet sizes much smaller than the jet diameter. The behavior of these small droplets is important to shed more light on how to achieve the homogeneity of the gas-fuel mixture as well as that it directly contributes to the development of large-eddy simulation (LES) models.

The numerical approach is a challenging process as one must take into account the transport of heat, mass and momentum for a multiphase flow. We choose a lattice Boltzmann method (LBM) due to its convenient mesoscopic natureto simulate interfacial flows. A non-ideal equation of state is used to control the phase change according to local thermodynamic properties. We analyze the droplet and surrounding vapor for a hydrocarbon fuel close to the critical point. Under forced convection, the droplet evaporation rate is seen to depend on the vapor temperatureand Reynolds number, where oscillatory flows can be observed. Marangoni forces are also present and drivethe droplet internal circulation once the temperature difference at the droplet surface becomes significant.In isotropic turbulence, the vapor phase shows increasing fluctuations of the thermodynamic variables oncethe fluid approaches the critical point. The droplet dynamics is also investigated under turbulent conditions, where the presence of coherent structures with strong shear layers affects the mass transfer between the liquid-vapor flow, showing also a correlation with the droplet deformation. Here, the surface tension and droplet size play a major role and are analyzed in detail.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2016. s. xiv, 53
Serie
TRITA-MEK, ISSN 0348-467X ; 2016:02
HSV kategori
Forskningsprogram
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-183487 (URN)978-91-7595-895-8 (ISBN)
Disputas
2016-04-07, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, 2010-3938Swedish Research Council, 2011-5355
Merknad

QC 20160314

Tilgjengelig fra: 2016-03-14 Laget: 2016-03-14 Sist oppdatert: 2016-03-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Amberg, GustavDo-Quang, Minh

Søk i DiVA

Av forfatter/redaktør
Albernaz, Daniel L.Amberg, GustavDo-Quang, Minh
Av organisasjonen
I samme tidsskrift
International Journal of Heat and Mass Transfer

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1224 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf