Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Events and conditions in droplet impact: a phase field prediction
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0002-5915-0789
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0003-2830-0454
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0003-3336-1462
2016 (engelsk)Inngår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 87, s. 54-65Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The phenomenon of droplet impact on a smooth, flat, partially wetted surface is studied by phase field simulation. A map of the different impact regimes is constructed for Reynolds numbers ranging from Re = 9 to Re = 9 x 10(4), and Ohnesorge numbers ranging from Oh = 3.3 x 10(-4) to Oh = 1.05. The results are compared with previous experiments from several aspects such as gas bubble entrapment, spreading radius and liquid sheet splashing, etc. The simulation proposes event predictions that are consistent with previous experiments. Our results and discussions give an overview of important characteristics during droplet impact, and provide insights on the droplet spreading after impact.

sted, utgiver, år, opplag, sider
Elsevier, 2016. Vol. 87, s. 54-65
HSV kategori
Forskningsprogram
Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:kth:diva-184142DOI: 10.1016/j.ijmultiphaseflow.2016.08.009ISI: 000386645300006Scopus ID: 2-s2.0-84987942203OAI: oai:DiVA.org:kth-184142DiVA, id: diva2:914972
Merknad

QC 20191014

Tilgjengelig fra: 2016-03-28 Laget: 2016-03-28 Sist oppdatert: 2019-10-14bibliografisk kontrollert
Inngår i avhandling
1. Capillarity and wetting of non-Newtonian droplets
Åpne denne publikasjonen i ny fane eller vindu >>Capillarity and wetting of non-Newtonian droplets
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Capillarity and dynamic wetting of non-Newtonian fluids are important in many natural and industrial processes, examples cover from a daily phenomenon as splashing of a cup of yogurt to advanced technologies such as additive manufacturing. The applicable non-Newtonian fluids are usually viscoelastic compounds of polymers and solvents. Previous experiments observed diverse interesting behaviors of a polymeric droplet on a wetted substrate or in a microfluidic device. However, our understanding of how viscoelasticity affects droplet dynamics remains very limited. This work intends to shed light on viscoelastic effect on two small scale processes, i.e., the motion of a wetting contact line and droplet splitting at a bifurcation tip.

 

Numerical simulation is employed to reveal detailed information such as elastic stresses and interfacial flow field. A numerical model is built, combining the phase field method, computational rheology techniques and computational fluid dynamics. The system is capable for calculation of realistic circumstances such as a droplet made of aqueous solution of polymers with moderate relaxation time, impacting a partially wetting surface in ambient air.

 

The work is divided into three flow cases. For the flow case of bifurcation tube, the evolution of the interface and droplet dynamics are compared between viscoelastic fluids and Newtonian fluids. The splitting or non-splitting behavior influenced by elastic stresses is analyzed. For the flow case of dynamic wetting, the flow field and rheological details such as effective viscosity and normal stress difference near a moving contact line are presented. The effects of shear-thinning and elasticity on droplet spreading and receding are analyzed, under inertial and inertialess circumstances. In the last part, droplet impact of both Newtonian and viscoelastic fluids are demonstrated. For Newtonian droplets, a phase diagram is drawn to visualize different impact regions for spreading, splashing and gas entrapment. For viscoelastic droplets, the viscoelastic effects on droplet deformation, spreading radius and contact line motion are revealed and discussed.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2016. s. 50
Emneord
Dynamic wetting, contact line, diffusive interface, viscoelasticity, non-Newtonian, microfluidics, droplet impact, droplet spreading
HSV kategori
Forskningsprogram
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-184146 (URN)978-91-7595-921-4 (ISBN)
Disputas
2016-04-22, Kollegiesalen, Brinellvägen 8, Stockholm, 10:15 (engelsk)
Opponent
Veileder
Merknad

QC 20160329

Tilgjengelig fra: 2016-03-29 Laget: 2016-03-28 Sist oppdatert: 2016-04-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Wang, YuliDo-Quang, MinhAmberg, Gustav

Søk i DiVA

Av forfatter/redaktør
Wang, YuliDo-Quang, MinhAmberg, Gustav
Av organisasjonen
I samme tidsskrift
International Journal of Multiphase Flow

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 144 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf