kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Topology-based Smoothing of 2D Scalar Fields with C1-Continuity
Courant Institute, New York University, USA. (Visualization and Data Analysis)ORCID-id: 0000-0002-1498-9062
2010 (Engelska)Ingår i: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 29, nr 3, s. 1221-1230Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Data sets coming from simulations or sampling of real-world phenomena often contain noise that hinders their processing and analysis. Automatic filtering and denoising can be challenging: when the nature of the noise is unknown, it is difficult to distinguish between noise and actual data features; in addition, the filtering process itself may introduce artificial features into the data set that were not originally present. In this paper, we propose a smoothing method for 2D scalar fields that gives the user explicit control over the data features. We define features as critical points of the given scalar function, and the topological structure they induce (i.e., the Morse-Smale complex). Feature significance is rated according to topological persistence. Our method allows filtering out spurious features that arise due to noise by means of topological simplification, providing the user with a simple interface that defines the significance threshold, coupled with immediate visual feedback of the remaining data features. In contrast to previous work, our smoothing method guarantees a C1-continuous output scalar field with the exact specified features and topological structures.

Ort, förlag, år, upplaga, sidor
2010. Vol. 29, nr 3, s. 1221-1230
Nyckelord [en]
[Computer Graphics]: Computational Geometry and Object Modeling - Geometric algorithms, languages, and systems
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datalogi; SRA - E-vetenskap (SeRC)
Identifikatorer
URN: urn:nbn:se:kth:diva-184778DOI: 10.1111/j.1467-8659.2009.01702.xISI: 000280991300046Scopus ID: 2-s2.0-77955737881OAI: oai:DiVA.org:kth-184778DiVA, id: diva2:916782
Anmärkning

QC 20160404

Tillgänglig från: 2016-04-04 Skapad: 2016-04-04 Senast uppdaterad: 2022-06-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://www.csc.kth.se/~weinkauf/publications/absweinkauf10b.html

Person

Weinkauf, Tino

Sök vidare i DiVA

Av författaren/redaktören
Weinkauf, Tino
I samma tidskrift
Computer graphics forum (Print)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2428 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf