kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Smooth Shape-Aware Functions with Controlled Extrema
MPI Informatik, Germany.ORCID-id: 0000-0002-1498-9062
2012 (Engelska)Ingår i: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 31, nr 5, s. 1577-1586Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Functions that optimize Laplacian-based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher-order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but also increasing oscillation, immediately releasing the maximum principle. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle-based shape deformation, controllable color diffusion, and topologically-constrained data smoothing.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell, 2012. Vol. 31, nr 5, s. 1577-1586
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datalogi; SRA - E-vetenskap (SeRC)
Identifikatorer
URN: urn:nbn:se:kth:diva-184839DOI: 10.1111/j.1467-8659.2012.03163.xISI: 000307307500002Scopus ID: 2-s2.0-84870222923OAI: oai:DiVA.org:kth-184839DiVA, id: diva2:916900
Anmärkning

QC 20160421

Tillgänglig från: 2016-04-05 Skapad: 2016-04-05 Senast uppdaterad: 2022-06-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://www.csc.kth.se/~weinkauf/publications/absjacobson12a.html

Person

Weinkauf, Tino

Sök vidare i DiVA

Av författaren/redaktören
Weinkauf, Tino
I samma tidskrift
Computer graphics forum (Print)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf