Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A model for gas phase mass transport on the porous nickel electrode in the molten carbonate electrolysis cell
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.ORCID-id: 0000-0001-9203-9313
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.ORCID-id: 0000-0002-2268-5042
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

A one-dimensional model based on the Maxwell-Stefan diffusion equations was applied to evaluate the effect of the reverse water-gas shift reaction and the influence of the gas phase mass transport on the performance of the porous nickel electrode in the molten carbonate electrolysis cell. The concentration gradients in the current collector are larger than in the electrode for the inlet gases not in equilibrium, due to the shift reaction taking place in the electrode. When the humidified gas compositions enter the current collector, the decrease of the shift reaction rate increases the electrode performance. The model well describes the polarization behavior of the Ni electrode in the electrolysis cell when the inlet gases have low contents of hydrogen. The mass-transfer limitations at low contents of water and carbon dioxide are captured in the model, but the effect on the electrode polarization, especially of carbon dioxide, is overestimated. Despite an overestimation in the calculations, the experimental data and the modeling results are still consistent in that carbon dioxide has a stronger effect on the gas phase mass transport than other components, i.e. water and hydrogen.

HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-185432OAI: oai:DiVA.org:kth-185432DiVA, id: diva2:920577
Merknad

QC 20160419

Tilgjengelig fra: 2016-04-18 Laget: 2016-04-18 Sist oppdatert: 2016-04-20bibliografisk kontrollert
Inngår i avhandling
1. Molten carbonate fuel cells for electrolysis
Åpne denne publikasjonen i ny fane eller vindu >>Molten carbonate fuel cells for electrolysis
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The molten carbonate fuel cell has evolved to current megawatt-scale commercial power plants. When using the fuel cell for electrolysis, it provides a promising option for producing fuel gases such as hydrogen and syngas. The cell can thereby operate reversibly as a dual energy converter for electricity generation and fuel gas production. The so-called reversible molten carbonate fuel cell will probably increase the usefulness of the system and improve the economic benefits.

This work has investigated the performance and durability of the cell in electrolysis and reversible operations. A lower polarization loss is found for the electrolysis cell than for the fuel cell, mainly due to the NiO electrode performing better in the MCEC. The stability of the cell in long-term tests evidences the feasibility of the MCEC and the RMCFC using a conventional fuel cell set-up, at least in lab-scale.

This study elucidates the electrode kinetics of hydrogen production and oxygen production. The experimentally obtained partial pressure dependencies for hydrogen production are high, and they do not reasonably satisfy the reverse pathways of the hydrogen oxidation mechanisms. The reverse process of an oxygen reduction mechanism in fuel cell operation is found to suitably describe oxygen production in the MCEC.

To evaluate the effect of the reverse water-gas shift reaction and the influence of the gas phase mass transport on the porous Ni electrode in the electrolysis cell, a mathematical model is applied in this study. When the humidified inlet gas compositions enter the current collector the decrease of the shift reaction rate increases the electrode performance. The model well describes the polarization behavior of the Ni electrode when the inlet gases have low contents of reactants. The experimental data and modeling results are consistent in that carbon dioxide has a stronger effect on the gas phase mass transport than other components, i.e. water and hydrogen.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2016. s. 57
Serie
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:18
Emneord
Durability, electrode kinetics, gas phase mass transport, molten carbonate electrolysis cell, molten carbonate fuel cell, performance, reversible.
HSV kategori
Forskningsprogram
Kemiteknik
Identifikatorer
urn:nbn:se:kth:diva-185433 (URN)978-91-7595-928-3 (ISBN)
Disputas
2016-05-20, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20160419

Tilgjengelig fra: 2016-04-20 Laget: 2016-04-18 Sist oppdatert: 2016-04-20bibliografisk kontrollert

Open Access i DiVA

fulltext(1458 kB)58 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1458 kBChecksum SHA-512
66971fed1350c5f3c48f14310ef7fe80d814db0dca85b167b25b9933f2e71010be145fd11af82aabf1fde97fec1dfcf40fa290a1e957e998dd032889ffb93baf
Type fulltextMimetype application/pdf

Personposter BETA

Lindbergh, GöranLagergren, Carina

Søk i DiVA

Av forfatter/redaktør
Hu, LanEkström, HenrikLindbergh, GöranLagergren, Carina
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 58 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 155 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf