Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A fast integral equation method for solid particles in viscous flow using quadrature by expansion
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.ORCID-id: 0000-0001-7425-8029
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models.

Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:kth:diva-185753OAI: oai:DiVA.org:kth-185753DiVA, id: diva2:923385
Forskningsfinansiär
Vetenskapsrådet, 2011-3178
Anmärkning

QC 20160426

Tillgänglig från: 2016-04-26 Skapad: 2016-04-26 Senast uppdaterad: 2016-04-27Bibliografiskt granskad
Ingår i avhandling
1. Fast and accurate integral equation methods with applications in microfluidics
Öppna denna publikation i ny flik eller fönster >>Fast and accurate integral equation methods with applications in microfluidics
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis is concerned with computational methods for fluid flows on the microscale, also known as microfluidics. This is motivated by current research in biological physics and miniaturization technology, where there is a need to understand complex flows involving microscale structures. Numerical simulations are an important tool for doing this.

The first, and smaller, part of the thesis presents a numerical method for simulating multiphase flows involving insoluble surfactants and moving contact lines. The method is based on an interface decomposition resulting in local, Eulerian grid representations. This provides a natural setting for solving the PDE governing the surfactant concentration on the interface.

The second, and larger, part of the thesis is concerned with a framework for simulating large systems of rigid particles in three-dimensional, periodic viscous flow using a boundary integral formulation. This framework can solve the underlying flow equations to high accuracy, due to the accurate nature of surface quadrature. It is also fast, due to the natural coupling between boundary integral methods and fast summation methods.

The development of the boundary integral framework spans several different fields of numerical analysis. For fast computations of large systems, a fast Ewald summation method known as Spectral Ewald is adapted to work with the Stokes double layer potential. For accurate numerical integration, a method known as Quadrature by Expansion is developed for this same potential, and also accelerated through a scheme based on geometrical symmetries. To better understand the errors accompanying this quadrature method, an error analysis based on contour integration and calculus of residues is carried out, resulting in highly accurate error estimates.

Abstract [sv]

Denna avhandling behandlar beräkningsmetoder för strömning på mikroskalan, även känt som mikrofluidik. Detta val av ämne motiveras av aktuell forskning inom biologisk fysik och miniatyrisering, där det ofta finns ett behov av att förstå komplexa flöden med strukturer på mikroskalan. Datorsimuleringar är ett viktigt verktyg för att öka den förståelsen.

Avhandlingens första, och mindre, del beskriver en numerisk metod för att simulera flerfasflöden med olösliga surfaktanter och rörliga kontaktlinjer. Metoden är baserad på en uppdelning av gränsskiktet, som tillåter det att representeras med lokala, Euleriska nät. Detta skapar naturliga förutsättningar för lösning av den PDE som styr surfaktantkoncentrationen på gränsskiktets yta.

Avhandlingens andra, och större, del beskriver ett ramverk för att med hjälp av en randintegralformulering simulera stora system av styva partiklar i tredimensionellt, periodiskt Stokesflöde. Detta ramverk kan lösa flödesekvationerna mycket noggrant, tack vare den inneboende höga noggrannheten hos metoder för numerisk integration på släta ytor. Metoden är också snabb, tack vare den naturliga kopplingen mellan randintegralmetoder och snabba summeringsmetoder.

Utvecklingen av ramverket för partikelsimuleringar täcker ett brett spektrum av ämnet numerisk analys. För snabba beräkningar på stora system används en snabb Ewaldsummeringsmetod vid namn spektral Ewald. Denna metod har anpassats för att fungera med den randintegralformulering för Stokesflöde som används. För noggrann numerisk integration används en metod kallad expansionskvadratur (eng. Quadrature by Expansion), som också har utvecklats för att passa samma Stokesformulering. Denna metod har även gjorts snabbare genom en nyutvecklad metod baserad på geometriska symmetrier. För att bättre förstå kvadraturmetodens inneboende fel har en analys baserad på konturintegraler och residykalkyl utförts, vilket har resulterat i väldigt noggranna felestimat.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. 51
Serie
TRITA-MAT-A ; 2016:03
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-185758 (URN)978-91-7595-962-7 (ISBN)
Disputation
2016-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2011-3178Vetenskapsrådet, 2007-6375
Anmärkning

QC 20160427

Tillgänglig från: 2016-04-27 Skapad: 2016-04-26 Senast uppdaterad: 2016-04-27Bibliografiskt granskad

Open Access i DiVA

fulltext(6250 kB)95 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6250 kBChecksumma SHA-512
6d5118987567be5c0c57871f3ba69e11d49418dbda8eb2787b77e8dbf12d6b30d4c0a8f1f1c4236be91244b0e10295ce5ff768c6c1bf640b6768baf60586a1be
Typ fulltextMimetyp application/pdf

Övriga länkar

A fast integral equation method for solid particles in viscous flow using quadrature by expansion

Personposter BETA

af Klinteberg, Ludvig

Sök vidare i DiVA

Av författaren/redaktören
af Klinteberg, LudvigTornberg, Anna-Karin
Av organisationen
Numerisk analys, NA
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 95 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 693 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf