Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fast and accurate integral equation methods with applications in microfluidics
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.ORCID-id: 0000-0001-7425-8029
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis is concerned with computational methods for fluid flows on the microscale, also known as microfluidics. This is motivated by current research in biological physics and miniaturization technology, where there is a need to understand complex flows involving microscale structures. Numerical simulations are an important tool for doing this.

The first, and smaller, part of the thesis presents a numerical method for simulating multiphase flows involving insoluble surfactants and moving contact lines. The method is based on an interface decomposition resulting in local, Eulerian grid representations. This provides a natural setting for solving the PDE governing the surfactant concentration on the interface.

The second, and larger, part of the thesis is concerned with a framework for simulating large systems of rigid particles in three-dimensional, periodic viscous flow using a boundary integral formulation. This framework can solve the underlying flow equations to high accuracy, due to the accurate nature of surface quadrature. It is also fast, due to the natural coupling between boundary integral methods and fast summation methods.

The development of the boundary integral framework spans several different fields of numerical analysis. For fast computations of large systems, a fast Ewald summation method known as Spectral Ewald is adapted to work with the Stokes double layer potential. For accurate numerical integration, a method known as Quadrature by Expansion is developed for this same potential, and also accelerated through a scheme based on geometrical symmetries. To better understand the errors accompanying this quadrature method, an error analysis based on contour integration and calculus of residues is carried out, resulting in highly accurate error estimates.

Abstract [sv]

Denna avhandling behandlar beräkningsmetoder för strömning på mikroskalan, även känt som mikrofluidik. Detta val av ämne motiveras av aktuell forskning inom biologisk fysik och miniatyrisering, där det ofta finns ett behov av att förstå komplexa flöden med strukturer på mikroskalan. Datorsimuleringar är ett viktigt verktyg för att öka den förståelsen.

Avhandlingens första, och mindre, del beskriver en numerisk metod för att simulera flerfasflöden med olösliga surfaktanter och rörliga kontaktlinjer. Metoden är baserad på en uppdelning av gränsskiktet, som tillåter det att representeras med lokala, Euleriska nät. Detta skapar naturliga förutsättningar för lösning av den PDE som styr surfaktantkoncentrationen på gränsskiktets yta.

Avhandlingens andra, och större, del beskriver ett ramverk för att med hjälp av en randintegralformulering simulera stora system av styva partiklar i tredimensionellt, periodiskt Stokesflöde. Detta ramverk kan lösa flödesekvationerna mycket noggrant, tack vare den inneboende höga noggrannheten hos metoder för numerisk integration på släta ytor. Metoden är också snabb, tack vare den naturliga kopplingen mellan randintegralmetoder och snabba summeringsmetoder.

Utvecklingen av ramverket för partikelsimuleringar täcker ett brett spektrum av ämnet numerisk analys. För snabba beräkningar på stora system används en snabb Ewaldsummeringsmetod vid namn spektral Ewald. Denna metod har anpassats för att fungera med den randintegralformulering för Stokesflöde som används. För noggrann numerisk integration används en metod kallad expansionskvadratur (eng. Quadrature by Expansion), som också har utvecklats för att passa samma Stokesformulering. Denna metod har även gjorts snabbare genom en nyutvecklad metod baserad på geometriska symmetrier. För att bättre förstå kvadraturmetodens inneboende fel har en analys baserad på konturintegraler och residykalkyl utförts, vilket har resulterat i väldigt noggranna felestimat.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. , s. 51
Serie
TRITA-MAT-A ; 2016:03
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:kth:diva-185758ISBN: 978-91-7595-962-7 (tryckt)OAI: oai:DiVA.org:kth-185758DiVA, id: diva2:923458
Disputation
2016-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2011-3178Vetenskapsrådet, 2007-6375
Anmärkning

QC 20160427

Tillgänglig från: 2016-04-27 Skapad: 2016-04-26 Senast uppdaterad: 2016-04-27Bibliografiskt granskad
Delarbeten
1. An explicit Eulerian method for multiphase flow with contact line dynamics and insoluble surfactant
Öppna denna publikation i ny flik eller fönster >>An explicit Eulerian method for multiphase flow with contact line dynamics and insoluble surfactant
2014 (Engelska)Ingår i: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 101, s. 50-63Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The flow behavior of many multiphase flow applications is greatly influenced by wetting properties and the presence of surfactants. We present a numerical method for two-phase flow with insoluble surfactants and contact line dynamics in two dimensions. The method is based on decomposing the interface between two fluids into segments, which are explicitly represented on a local Eulerian grid. It provides a natural framework for treating the surfactant concentration equation, which is solved locally on each segment. An accurate numerical method for the coupled interface/surfactant system is given. The system is coupled to the Navier-Stokes equations through the immersed boundary method, and we discuss the issue of force regularization in wetting problems, when the interface touches the boundary of the domain. We use the method to illustrate how the presence of surfactants influences the behavior of free and wetting drops.

Nyckelord
Multiphase flow, Insoluble surfactant, Marangoni force, Moving contact line, Immersed boundary method
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:kth:diva-48763 (URN)10.1016/j.compfluid.2014.05.029 (DOI)000340851500005 ()2-s2.0-84903152815 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 621-2007-6375
Anmärkning

QC 20140919. Updated from accepted to published.

Tillgänglig från: 2011-11-23 Skapad: 2011-11-23 Senast uppdaterad: 2017-12-08Bibliografiskt granskad
2. Fast Ewald summation for Stokesian particle suspensions
Öppna denna publikation i ny flik eller fönster >>Fast Ewald summation for Stokesian particle suspensions
2014 (Engelska)Ingår i: International Journal for Numerical Methods in Fluids, ISSN 0271-2091, E-ISSN 1097-0363, Vol. 76, nr 10, s. 669-698Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a numerical method for suspensions of spheroids of arbitrary aspect ratio, which sediment under gravity. The method is based on a periodized boundary integral formulation using the Stokes double layer potential. The resulting discrete system is solved iteratively using generalized minimal residual accelerated by the spectral Ewald method, which reduces the computational complexity to O(N log N), where N is the number of points used to discretize the particle surfaces. We develop predictive error estimates, which can be used to optimize the choice of parameters in the Ewald summation. Numerical tests show that the method is well conditioned and provides good accuracy when validated against reference solutions. 

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2014
Nyckelord
viscous flows, integral equations, error estimation, microfluidics, multibody dynamics, spectral, double layer, boundary integral, ewald summation
Nationell ämneskategori
Strömningsmekanik och akustik Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-116383 (URN)10.1002/fld.3953 (DOI)000344349000004 ()2-s2.0-84939258934 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2011-3178
Anmärkning

QC 20141119

Tillgänglig från: 2013-01-17 Skapad: 2013-01-17 Senast uppdaterad: 2020-03-10Bibliografiskt granskad
3. Estimation of quadrature errors in layer potential evaluation using quadrature by expansion
Öppna denna publikation i ny flik eller fönster >>Estimation of quadrature errors in layer potential evaluation using quadrature by expansion
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

In boundary integral methods it is often necessary to evaluate layer potentials on or close to the boundary, where the underlying integral is difficult to evaluate numerically. Quadrature by expansion (QBX) is a new method for dealing with such integrals, and it is based on forming a local expansion of the layer potential close to the boundary. In doing so, one introduces a new quadrature error due to nearly singular integration in the evaluation of expansion coefficients. Using a method based on contour integration and calculus of residues, the quadrature error of nearly singular integrals can be accurately estimated. This makes it possible to derive accurate estimates for the quadrature errors related to QBX, when applied to layer potentials in two and three dimensions. As examples we derive estimates for the Laplace and Helmholtz single layer potentials. These results can be used for parameter selection in practical applications.

Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-185511 (URN)
Forskningsfinansiär
Vetenskapsrådet, 2011-3178
Anmärkning

QC 20160426

Tillgänglig från: 2016-04-21 Skapad: 2016-04-21 Senast uppdaterad: 2016-04-27Bibliografiskt granskad
4. A fast integral equation method for solid particles in viscous flow using quadrature by expansion
Öppna denna publikation i ny flik eller fönster >>A fast integral equation method for solid particles in viscous flow using quadrature by expansion
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models.

Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-185753 (URN)
Forskningsfinansiär
Vetenskapsrådet, 2011-3178
Anmärkning

QC 20160426

Tillgänglig från: 2016-04-26 Skapad: 2016-04-26 Senast uppdaterad: 2016-04-27Bibliografiskt granskad
5. Ewald summation for the rotlet singularity of Stokes flow
Öppna denna publikation i ny flik eller fönster >>Ewald summation for the rotlet singularity of Stokes flow
2016 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Ewald summation is an efficient method for computing the periodic sums that appear when considering the Green's functions of Stokes flow together with periodic boundary conditions. We show how Ewald summation, and accompanying truncation error estimates, can be easily derived for the rotlet, by considering it as a superposition of electrostatic force calculations.

Förlag
s. 9
Nationell ämneskategori
Strömningsmekanik och akustik Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-184125 (URN)
Anmärkning

QC20160407

Tillgänglig från: 2016-03-28 Skapad: 2016-03-28 Senast uppdaterad: 2016-04-27Bibliografiskt granskad

Open Access i DiVA

fulltext(734 kB)313 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 734 kBChecksumma SHA-512
749c374fafeb906410397825bc032e2a15ec477b98d1284f6e1623a8548ddad4f360338bcbd2b843a2a7728d689c4ab2f2ef695e16d8ba099b2b3798ecb8f33c
Typ fulltextMimetyp application/pdf

Personposter BETA

af Klinteberg, Ludvig

Sök vidare i DiVA

Av författaren/redaktören
af Klinteberg, Ludvig
Av organisationen
Numerisk analys, NA
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 313 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 33830 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf