Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dexterous Grasping: Representation and Optimization
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. CVAP/CAS/CSC, KTH Royal Institute of Technology. (CVAP)ORCID-id: 0000-0003-4132-1217
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Many robot object interactions require that an object is firmly held, and that the grasp remains stable during the whole manipulation process. Based on grasp wrench space, this thesis address the problems of measuring the grasp sensitivity against friction changes, planning contacts and hand configurations on mesh and point cloud representations of arbitrary objects, planning adaptable grasps and finger gaiting for keeping a grasp stable under various external disturbances, as well as learning of grasping manifolds for more accurate reachability and inverse kinematics computation for multifingered grasping. 

Firstly, we propose a new concept called friction sensitivity, which measures how susceptible a specific grasp is to changes in the underlying frictionc oefficients. We develop algorithms for the synthesis of stable grasps with low friction sensitivity and for the synthesis of stable grasps in the case of small friction coefficients.  

Secondly, for fast planning of contacts and hand configurations for dexterous grasping, as well as keeping the stability of a grasp during execution, we present a unified framework for grasp planning and in-hand grasp adaptation using visual, tactile and proprioceptive feedback. The main objective of the proposed framework is to enable fingertip grasping by addressing problems of changed weight of the object, slippage and external disturbances. For this purpose, we introduce the Hierarchical Fingertip Space (HFTS) as a representation enabling optimization for both efficient grasp synthesis and online finger gaiting. Grasp synthesis is followed by a grasp adaptation step that consists of both grasp force adaptation through impedance control and regrasping/finger gaiting when the former is not sufficient. 

Lastly, to improve the efficiency and accuracy of dexterous grasping and in-hand manipulation, we present a system for fingertip grasp planning that incrementally learns a heuristic for hand reachability and multi-fingered inverse kinematics. During execution the system plans and executes fingertip grasps using Canny’s grasp quality metric and a learned random forest based hand reachability heuristic. In the offline module, this heuristic is improved based on a grasping manifold that is incrementally learned from the experiences collected during execution.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2016. , s. 167
Serie
TRITA-CSC-A, ISSN 1653-5723 ; 14
Emneord [en]
Dexterous Grasping, Hierarchical Fingertip Space, Grasp Planning, Grasp Adaptation
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-186158ISBN: 978-91-7595-993-1 (tryckt)OAI: oai:DiVA.org:kth-186158DiVA, id: diva2:925809
Disputas
2016-06-03, D2, Lindstedtsvägen 5, Stockholm, 13:25 (engelsk)
Opponent
Prosjekter
Flexbot
Forskningsfinansiär
EU, European Research Council, 6138
Merknad

QC 20160516

Tilgjengelig fra: 2016-05-16 Laget: 2016-05-03 Sist oppdatert: 2016-05-18bibliografisk kontrollert
Delarbeid
1. Friction Coefficients and Grasp Synthesis
Åpne denne publikasjonen i ny fane eller vindu >>Friction Coefficients and Grasp Synthesis
2013 (engelsk)Inngår i: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), IEEE , 2013, s. 3520-3526Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We propose a new concept called friction sensitivity which measures how susceptible a specific grasp is to changes in the underlying friction coefficients. We develop algorithms for the synthesis of stable grasps with low friction sensitivity and for the synthesis of stable grasps in the case of small friction coefficients. We describe how grasps with low friction sensitivity can be used when a robot has an uncertain belief about friction coefficients and study the statistics of grasp quality under changes in those coefficients. We also provide a parametric estimate for the distribution of grasp qualities and friction sensitivities for a uniformly sampled set of grasps.

sted, utgiver, år, opplag, sider
IEEE, 2013
Serie
IEEE International Conference on Intelligent Robots and Systems. Proceedings, ISSN 2153-0858
Emneord
grasping, friction sensitivity, robotic manipulation
HSV kategori
Forskningsprogram
SRA - Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-129498 (URN)10.1109/IROS.2013.6696858 (DOI)000331367403087 ()2-s2.0-84893771956 (Scopus ID)978-146736358-7 (ISBN)
Konferanse
2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013; Tokyo; Japan; 3 November 2013 through 8 November 2013
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, FP7-ERC-279933Swedish Research CouncilSwedish Foundation for Strategic Research
Merknad

QC 20140128

Tilgjengelig fra: 2013-10-13 Laget: 2013-09-30 Sist oppdatert: 2018-01-11bibliografisk kontrollert
2. Combinatorial optimization for hierarchical contact-level grasping
Åpne denne publikasjonen i ny fane eller vindu >>Combinatorial optimization for hierarchical contact-level grasping
2014 (engelsk)Inngår i: Proceedings - IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2014, s. 381-388Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We address the problem of generating force-closed point contact grasps on complex surfaces and model it as a combinatorial optimization problem. Using a multilevel refinement metaheuristic, we maximize the quality of a grasp subject to a reachability constraint by recursively forming a hierarchy of increasingly coarser optimization problems. A grasp is initialized at the top of the hierarchy and then locally refined until convergence at each level. Our approach efficiently addresses the high dimensional problem of synthesizing stable point contact grasps while resulting in stable grasps from arbitrary initial configurations. Compared to a sampling-based approach, our method yields grasps with higher grasp quality. Empirical results are presented for a set of different objects. We investigate the number of levels in the hierarchy, the computational complexity, and the performance relative to a random sampling baseline approach.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2014
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-176144 (URN)10.1109/ICRA.2014.6906885 (DOI)000377221100057 ()2-s2.0-84929171240 (Scopus ID)
Konferanse
2014 IEEE International Conference on Robotics and Automation, ICRA 2014, 31 May 2014 through 7 June 2014
Merknad

QC 20151130

Tilgjengelig fra: 2015-11-30 Laget: 2015-11-02 Sist oppdatert: 2020-04-08bibliografisk kontrollert
3. Hierarchical Fingertip Space for Multi-fingered Precision Grasping
Åpne denne publikasjonen i ny fane eller vindu >>Hierarchical Fingertip Space for Multi-fingered Precision Grasping
2014 (engelsk)Inngår i: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2014), IEEE , 2014, s. 1641-1648Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Dexterous in-hand manipulation of objects benefits from the ability of a robot system to generate precision grasps. In this paper, we propose a concept of Fingertip Space and its use for precision grasp synthesis. Fingertip Space is a representation that takes into account both the local geometry of object surface as well as the fingertip geometry. As such, it is directly applicable to the object point cloud data and it establishes a basis for the grasp search space. We propose a model for a hierarchical encoding of the Fingertip Space that enables multilevel refinement for efficient grasp synthesis. The proposed method works at the grasp contact level while not neglecting object shape nor hand kinematics. Experimental evaluation is performed for the Barrett hand considering also noisy and incomplete point cloud data.

sted, utgiver, år, opplag, sider
IEEE, 2014
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
Emneord
Contact levels, Experimental evaluation, Grasp synthesis, Hand kinematics, Hand manipulation, Hierarchical encoding, Multilevel refinement, Point cloud data
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-163508 (URN)10.1109/IROS.2014.6942775 (DOI)000349834601110 ()2-s2.0-84911484070 (Scopus ID)978-1-4799-6934-0 (ISBN)
Konferanse
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014, Palmer House Hilton Hotel Chicago, United States, 14 September 2014 through 18 September 2014
Merknad

QC 20150407

Tilgjengelig fra: 2015-04-07 Laget: 2015-04-07 Sist oppdatert: 2016-05-16bibliografisk kontrollert
4. On the Evolution of Fingertip Grasping Manifolds
Åpne denne publikasjonen i ny fane eller vindu >>On the Evolution of Fingertip Grasping Manifolds
Vise andre…
2016 (engelsk)Inngår i: IEEE International Conference on Robotics and Automation, IEEE Robotics and Automation Society, 2016, s. 2022-2029, artikkel-id 7487349Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Efficient and accurate planning of fingertip grasps is essential for dexterous in-hand manipulation. In this work, we present a system for fingertip grasp planning that incrementally learns a heuristic for hand reachability and multi-fingered inverse kinematics. The system consists of an online execution module and an offline optimization module. During execution the system plans and executes fingertip grasps using Canny’s grasp quality metric and a learned random forest based hand reachability heuristic. In the offline module, this heuristic is improved based on a grasping manifold that is incrementally learned from the experiences collected during execution. The system is evaluated both in simulation and on a SchunkSDH dexterous hand mounted on a KUKA-KR5 arm. We show that, as the grasping manifold is adapted to the system’s experiences, the heuristic becomes more accurate, which results in an improved performance of the execution module. The improvement is not only observed for experienced objects, but also for previously unknown objects of similar sizes.

sted, utgiver, år, opplag, sider
IEEE Robotics and Automation Society, 2016
Emneord
Fingertip Grasping, Grasping Manifold
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-187060 (URN)10.1109/ICRA.2016.7487349 (DOI)000389516201112 ()2-s2.0-84977471090 (Scopus ID)978-1-4673-8026-3 (ISBN)
Konferanse
IEEE International Conference on Robotics and Automation
Prosjekter
RobDream
Merknad

QC 20160517

Tilgjengelig fra: 2016-05-16 Laget: 2016-05-16 Sist oppdatert: 2020-01-22bibliografisk kontrollert
5. Hierarchical Fingertip Space: A Unified Framework for Grasp Planning and In-Hand Grasp Adaptation
Åpne denne publikasjonen i ny fane eller vindu >>Hierarchical Fingertip Space: A Unified Framework for Grasp Planning and In-Hand Grasp Adaptation
Vise andre…
2016 (engelsk)Inngår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 32, nr 4, s. 960-972, artikkel-id 7530865Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present a unified framework for grasp planning and in-hand grasp adaptation using visual, tactile and proprioceptive feedback. The main objective of the proposed framework is to enable fingertip grasping by addressing problems of changed weight of the object, slippage and external disturbances. For this purpose, we introduce the Hierarchical Fingertip Space (HFTS) as a representation enabling optimization for both efficient grasp synthesis and online finger gaiting. Grasp synthesis is followed by a grasp adaptation step that consists of both grasp force adaptation through impedance control and regrasping/finger gaiting when the former is not sufficient. Experimental evaluation is conducted on an Allegro hand mounted on a Kuka LWR arm.

sted, utgiver, år, opplag, sider
IEEE Press, 2016
Emneord
Hierarchical Fingertip Space, Grasp Planning, Grasp Adaptation, Fingertip Grasping
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-187058 (URN)10.1109/TRO.2016.2588879 (DOI)000382754900016 ()2-s2.0-84981303220 (Scopus ID)
Prosjekter
FlexBot
Forskningsfinansiär
EU, European Research Council, FLEXBOT - FP7-ERC-279933
Merknad

QC 20160517

Tilgjengelig fra: 2016-05-16 Laget: 2016-05-16 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

fulltext(9175 kB)400 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 9175 kBChecksum SHA-512
b4de96223ed80ebde9bcbdc39839c943b6e6f6785655d9e9713f5e95ffaaaa0947c1d4555fe932c3b939532f47ca5a221b63de3a185ccd2b8178f482c250d5b6
Type fulltextMimetype application/pdf

Personposter BETA

Hang, Kaiyu

Søk i DiVA

Av forfatter/redaktør
Hang, Kaiyu
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 400 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 793 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf