Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Selective gating to vibrational modes through resonant X-ray scattering
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi. (Theoretical Chemistry and Biology)ORCID-id: 0000-0003-4020-0923
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi. (Theoretical Chemistry and Biology)
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, s. 14165-1-14165-7Artikel i tidskrift, Letter (Refereegranskat) Published
Abstract [en]

The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.

Ort, förlag, år, upplaga, sidor
Macmillan Publishers Ltd., 2017. Vol. 8, s. 14165-1-14165-7
Nyckelord [en]
water, resonant inelastic x-ray scattering, vibrational modes, RIXS
Nationell ämneskategori
Atom- och molekylfysik och optik Teoretisk kemi
Forskningsämne
Teoretisk kemi och biologi
Identifikatorer
URN: urn:nbn:se:kth:diva-187011DOI: 10.1038/ncomms14165ISI: 000392541700001PubMedID: 28106058Scopus ID: 2-s2.0-85009990586OAI: oai:DiVA.org:kth-187011DiVA, id: diva2:928528
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW-2013.0020Carl Tryggers stiftelse för vetenskaplig forskning , CTS 15:266Carl Tryggers stiftelse för vetenskaplig forskning , CTS 14:355Vetenskapsrådet, C0334701Vetenskapsrådet, 2015-03781Vetenskapsrådet, 2015-03956Vetenskapsrådet, 2015-04510EU, Horisont 2020, 669531 EDAX
Anmärkning

QC 20170123

Tillgänglig från: 2016-05-16 Skapad: 2016-05-16 Senast uppdaterad: 2020-03-09Bibliografiskt granskad
Ingår i avhandling
1. Coupled electron-nuclear dynamics in inelastic X-ray scattering
Öppna denna publikation i ny flik eller fönster >>Coupled electron-nuclear dynamics in inelastic X-ray scattering
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This Thesis is devoted to theoretical and experimental studies of resonant inelastic X-ray scattering (RIXS) of carbon monoxide and water molecules. Using state-of-the-art ab initio electronic structure calculations and a time-dependent wave packet formalism, we make a complete analysis of the experimental RIXS spectra of the two molecular systems. In the CO RIXS analysis, we are able to reproduce the RIXS experiment with an excellent accuracy. Interference between different RIXS channels corresponding to the scattering via orthogonal molecular orbitals in the core-excited state of CO is described. We show the complete breakdown of the Born-Oppenheimer approximation in the region where forbidden final Rydberg states are mixed with a valence allowed final state. Here we explain the formation of a spectral feature which was attributed to a single state in previous studies. Moreover, through an experimental-theoretical combination, we improve the minimum of the valence E’Π excited state potential, along with the coupling constant between two Rydberg states. We developed a new theoretical approach to describe triatomic molecules through the wave packet propagation formalism to study the water system, which reproduces with high accuracy the vibrational structure of the high-resolution experimental quasi-elastic RIXS spectra. We demonstrate that due to the vibrational mode coupling and anharmonicity of the ground and core-excited potential energy surfaces, different core-excited states in RIXS can be used as gates to probe different vibrational dynamics and to map the ground state potential. Isotopic substitution is investigated by theoretical simulations and important dynamical features are discussed, especially for the dissociative core-excited state, where a so-called “atomic” peak is formed. We show the strong potential of high-resolution RIXS experiments combined with high-level theoretical simulations for advanced studies of highly excited molecular states.

Ort, förlag, år, upplaga, sidor
Stockholm, Sweden: KTH Royal Institute of Technology, 2016. s. 87
Serie
TRITA-BIO-Report, ISSN 1654-2312 ; 2016:10
Nyckelord
X-ray spectroscopy, resonant inelastic X-ray scattering, water, carbon monoxide
Nationell ämneskategori
Teoretisk kemi
Forskningsämne
Teoretisk kemi och biologi
Identifikatorer
urn:nbn:se:kth:diva-186530 (URN)978-91-7595-988-7 (ISBN)
Disputation
2016-06-08, FB53, AlbaNova University Center, Roslagstullsbacken 21, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW-2013.0020
Anmärkning

QC 20160516

Tillgänglig från: 2016-05-16 Skapad: 2016-05-12 Senast uppdaterad: 2019-12-20Bibliografiskt granskad
2. Quantum Nuclear Dynamics in Resonant X-ray Scattering of Gas-Phase and Liquid Systems
Öppna denna publikation i ny flik eller fönster >>Quantum Nuclear Dynamics in Resonant X-ray Scattering of Gas-Phase and Liquid Systems
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis focuses on the role of the nuclear degrees of freedom in X-ray induced molecular processes. An important part of it is devoted to establishing theoretical principles to model and interpret high-resolution resonant X-ray scattering experiments in gases and liquids. Our investigations address the resonant inelastic x-ray scattering (RIXS) of H2O(g), H2O(l) and CH3OH(g) and Auger emission induced by hard X-rays in CO(g). The simulations for gas-phase systems are based on a multi-mode wave packet formalism and on potential energy surfaces computed with multi-configurational approaches.

For liquid systems, we propose a classical/quantum formalism for simulating RIXS based on a combination of ab initio molecular dynamics, density functional theory calculations and quantum nuclear wave packet propagation. The developed model is able to reproduce the experimental observation of shortening of the vibrational progression in H2O(l).

We show that electronically-elastic RIXS has an intrinsic capability to map the potential energy surface and to carry out vibrational analysis of the electronic ground state in free molecules as well as liquids. For gas-phase water, we see that the landscape of different core-excited states cause the nuclear wave packet to be localized along specific directions thus allowing to reconstruct one-dimensional potential energy curves. For liquid water, we propose a model for deriving, from experiment, confidence intervals for the molecular potential energy curves along the OH bonds, which are determined by the local arrangement of the hydrogen bond network.

We also investigate the role of ultra-fast rotations induced by photoionization by hard X-rays. In this case, the ejection of a fast photoelectron results in an ultra-fast rotational motion of the molecule, which combined with the anisotropy of the Auger process causes the spectral profile to be split due to a dynamical Doppler effect.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2018. s. 88
Serie
TRITA-CBH-FOU ; 2018:24
Nyckelord
resonant inelastic X-ray scattering, X-ray absorption, water, methanol, CO, rotational doppler effect, recoil, wave packet, non-Franck-Condon effect, ultra-fast molecular dissociation, potential energy surface, hydrogen bond, liquid
Nationell ämneskategori
Teoretisk kemi Fysik Atom- och molekylfysik och optik
Forskningsämne
Teoretisk kemi och biologi
Identifikatorer
urn:nbn:se:kth:diva-227962 (URN)978-91-7729-806-9 (ISBN)
Disputation
2018-06-12, FA32, AlbaNova University Center, Roslagstullsbacken 21, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20180515

Tillgänglig från: 2018-05-15 Skapad: 2018-05-15 Senast uppdaterad: 2018-05-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopushttp://www.nature.com/articles/ncomms14165

Personposter BETA

C. Couto, RafaelÅgren, HansKimberg, Victor

Sök vidare i DiVA

Av författaren/redaktören
C. Couto, RafaelVaz da Cruz, ViníciusÅgren, HansGel’mukhanov, FarisKimberg, Victor
Av organisationen
Teoretisk kemi och biologi
I samma tidskrift
Nature Communications
Atom- och molekylfysik och optikTeoretisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 495 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf