Open this publication in new window or tab >>Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]
Abstract: Poly 3-hexylthiophene (P3HT) is one of the most studied conjugated polymers for organic solar cell applications due to its light weight, flexible processing methods and low cost fabrication. However, the hole mobility in P3HT is still relatively low compared to that of the inorganic semiconductors, which is one of the main challenges to achieve better performance of organic solar cells. The P3HT nanofibers with aligned by inducing an external electric field have been studied to improve the hole mobility in P3HT nanofibers. Here we present an AC electric field (1.3 V/µm, 50 Hz) induced alignment of P3HT nanofibers with two different lengths. The optical absorption spectra of aligned nanofibers were measured under different polarizations of incident light. The longer nanofibers showed higher dichroic raitos than that of shorter nanofibers, revealing a better alignment pattern. The photoconductivity of non-aligned and aligned P3HT nanofibers were measured and compared, where the aligned P3HT nanofibers showed a ~270% higher dark current than that of non-aligned sample. Moreover, the current measured under the illumination showed ~110% enhancement in the aligned P3HT nanofibers while only ~70% enhancement was obseved in non-aligned nanofibers, revealing that the alignment process have the potential to improve the mobility for optoelectronic applications.
Keywords
P3HT nanofibers, electric field induced alignment, J-V measurement
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-187315 (URN)
Note
QC 20160520
2016-05-192016-05-192022-09-06Bibliographically approved