kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Large-Scale Friction Control in Turbulent Wall Flow in Low Reynolds Number Channels
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. (Philipp Schlatter)ORCID iD: 0000-0003-3211-4347
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. (Henrik Alfredsson)ORCID iD: 0000-0002-1663-3553
Show others and affiliations
2016 (English)In: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 97, no 3, p. 811-827Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

The present study reconsiders the control scheme proposed by Schoppa & Hussain (Phys. Fluids 10, 1049–1051 1998), using a new set of numerical simulations. The computations are performed in a turbulent channel at friction Reynolds numbers of 104 (the value employed in the original study) and 180. In particular, the aim is to better characterise the physics of the control as well as to investigate the optimal parameters. The former purpose lead to a re-design of the control strategy: moving from a numerical imposition of the mean flow to the application of a volume force. A comparison between the two is presented. Results show that the original method only gave rise to transient drag reduction. The forcing method, on the other hand, leads to sustained drag reduction, and thus shows the superiority of the forcing approach for all wavelengths investigated. A clear maximum efficiency in drag reduction is reached for the case with a viscous-scaled spanwise wavelength of the vortices of 1200, which yields a drag reduction of 18 %, as compared to the smaller wavelength of 400 suggested as the most efficient vortex in Schoppa & Hussain. Various turbulence statistics are considered, in an effort to elucidate the causes of the drag-reducing effect. For instance, a region of negative production was found, which is quite unusual for developed turbulent channel flow.

Place, publisher, year, edition, pages
Springer Netherlands, 2016. Vol. 97, no 3, p. 811-827
Keywords [en]
Direct numerical simulation, Flow control, Skin-friction reduction, Turbulent channel flow
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-187264DOI: 10.1007/s10494-016-9723-8ISI: 000388171600007Scopus ID: 2-s2.0-84960409466OAI: oai:DiVA.org:kth-187264DiVA, id: diva2:929567
Note

QC 20161004

Available from: 2016-05-19 Created: 2016-05-19 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Numerical studies on flows with secondary motion
Open this publication in new window or tab >>Numerical studies on flows with secondary motion
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This work is concerned with the study of flow stability and turbulence control - two old but still open problems of fluid mechanics. The topics are distinct and are (currently) approached from different directions and with different strategies. This thesis reflects this diversity in subject with a difference in geometry and, consequently, flow structure: the first problem is approached in the study of the flow in a toroidal pipe, the second one in an attempt to reduce the drag in a turbulent channel flow.

The flow in a toroidal pipe is chosen as it represents the common asymptotic limit between spatially developing and helical pipes. Furthermore, the torus represents the smallest departure from the canonical straight pipe flow, at least for small curvatures. The interest in this geometry is twofold: it allows us to isolate the effect of the curvature on the flow and to approach straight as well as helical pipes. The analysis features a characterisation of the steady solution as a function of curvature and the Reynolds number. The problem of forcing fluid in the pipe is addressed, and the so-called Dean number is shown to be of little use, except for infinitesimally low curvatures. It is found that the flow is modally unstable and undergoes a Hopf bifurcation that leads to a limit cycle. The bifurcation and the corresponding eigenmodes are studied in detail, providing a complete picture of the instability.

The second part of the thesis approaches fluid mechanics from a different perspective: the Reynolds number is too high for a deterministic description and the flow is analysed with statistical tools. The objective is to reduce the friction exerted by a turbulent flow on the walls of a channel, and the idea is to employ a control strategy independent of the small, and Reynolds number-dependent, turbulent scales. The method of choice was proposed by Schoppa & Hussain [Phys. Fluids 10:1049-1051 (1998)] and consists in the imposition of streamwise invariant, large-scale vortices. The vortices are re-implemented as a volume force, validated and analysed. Results show that the original method only gave rise to transient drag reduction while the forcing version is capable of sustained drag reduction of up to 18%. An analysis of the method, though, reveals that its effectiveness decreases rapidly as the Reynolds number is increased.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2016. p. 26
Series
TRITA-MEK, ISSN 0348-467X ; 2016:16
Keywords
nonlinear dynamical systems, instability, bifurcation, flow control, skin-friction reduction
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-193537 (URN)978-91-7729-149-7 (ISBN)
Presentation
2016-10-28, D3, Lindstedtsvägen 5, Stockholm, 08:15 (English)
Opponent
Supervisors
Note

QC 20161004

Available from: 2016-10-04 Created: 2016-10-03 Last updated: 2022-06-27Bibliographically approved
2. Of Pipes and Bends
Open this publication in new window or tab >>Of Pipes and Bends
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work is concerned with the transition to turbulence of the flow in bent pipes, but it also includes an analysis of large-scale turbulent structures and their use for flow control.

The flow in a toroidal pipe is selected as it represents the common asymptotic limit between spatially developing and helical pipes. The study starts with a characterisation of the laminar flow as a function of curvature and the Reynolds number Re, since the so-called Dean number is found to be of little use except for infinitesimally low curvatures. It is found that the flow is modally unstable and undergoes a Hopf bifurcation for any curvature greater than zero. The bifurcation is studied in detail, and an effort to connect this modal instability with the linearly stable straight pipe is also presented.

This flow is not only modally unstable, but undergoes subcritical transition at low curvatures. This scenario is found to bear similarities to straight pipes, but also fundamental differences such as weaker turbulent structures and the apparent absence of puff splitting. Toroidal pipe flow is peculiar, in that it is one of the few fluid flows presenting both sub- and supercritical transition to turbulence; the critical point where the two scenarios meet is therefore of utmost interest. It is found that a bifurcation cascade and featureless turbulence actually coexist for a range of curvature and Re, and the attractors of the respective structures have a small but finite basin of attraction.

In 90◦ bent pipes at higher Re large-scale flow structures cause an oscilla- tory motion known as swirl-switching. Three-dimensional proper orthogonal decomposition is used to determine the cause of this phenomenon: a wave-like structure which is generated in the bent section, and is possibly a remnant of a low-Re instability.

The final part of the thesis has a different objective: to reduce the turbulent frictional drag on the walls of a channel by employing a control strategy independent of Re-dependent turbulent scales, initially proposed by Schoppa & Hussain [Phys. Fluids 10:1049–1051 (1998)]. Results show that the original method only gives rise to transient drag reduction while a revised version is capable of sustained drag reduction of up to 18%. However, the effectiveness of this control decreases rapidly as the Reynolds number is increased, and the only possibility for high-Re applications is to use impractically small actuators.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 51
Series
TRITA-SCI-FOU ; 2018:25
Keywords
nonlinear instability, bifurcation, flow control
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-228225 (URN)978-91-7729-823-6 (ISBN)
Public defence
2018-06-15, F2, Lindstedtsvägen 26, Stockholm, 10:15 (English)
Opponent
Supervisors
Note

QC 20180521

Available from: 2018-05-21 Created: 2018-05-18 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Canton, JacopoÖrlü, RamisSchlatter, Philipp

Search in DiVA

By author/editor
Canton, JacopoÖrlü, RamisSchlatter, Philipp
By organisation
MechanicsLinné Flow Center, FLOW
In the same journal
Flow Turbulence and Combustion
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 343 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf