kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
One-Component Thiol-Alkene Functional Oligoester Resins Utilizing Lipase Catalysis
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0003-3201-5138
KTH, School of Biotechnology (BIO), Industrial Biotechnology.ORCID iD: 0000-0002-2993-9375
2016 (English)In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Chemo-enzymatic methods are powerful tools for the synthesis of novel materials. By combining the flexibility of chemical synthesis and the high selectivity of enzymes, a variety of functional materials can be achieved. In the present study, a series of α,ω-thiol telechelic oligoesters with varying amount of internal alkenes are prepared using selective lipase catalysis and are subsequently cross-linked by thiol-ene chemistry yielding alkene functional networks. Due to the reactivity of thiols and alkenes almost all present thiol-ene systems consist of two components. This work demonstrates that selective lipase catalysis in combination with renewable monomers with internal alkenes is a promising system for achieving one-component thiol-alkene functional resins with good storage stability and a high degree of thiol end-groups. The developed chemo-enzymatic route yields polymer networks with tailored amount of alkene functionalities in the final thermoset, which facilitate further postmodification.

Place, publisher, year, edition, pages
John Wiley & Sons, 2016.
Keywords [en]
Catalysis, Chemoselectivity, Functional network, Photochemistry, Telechelics, Crosslinking, Functional materials, Photochemical reactions, Resins, Synthesis (chemical), Chemo-selectivity, Enzymatic methods, Post-modification, Storage stability, Thiol-ene chemistries, Thiol-ene systems, Hydrocarbons
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-186775DOI: 10.1002/macp.201500490ISI: 000380018700002Scopus ID: 2-s2.0-84959509216OAI: oai:DiVA.org:kth-186775DiVA, id: diva2:929912
Note

QC 20160520

Available from: 2016-05-20 Created: 2016-05-13 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Exploring fatty acid derivatives from renewable resources as raw materials for coating applications
Open this publication in new window or tab >>Exploring fatty acid derivatives from renewable resources as raw materials for coating applications
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the work presented herein, epoxy fatty acid derivatives were explored in the formation of thermosets for coating applications. The epoxy fatty acid derivatives were obtained from renewable resources such as birch tree bark and epoxidized linseed oil. The birch bark was used to isolate 9,10-epoxy-18-hydroxyoctadecanoic acid (EFA) and the epoxidized linseed oil was used to retrieve methyl stearate and 3 different epoxy methyl esters: epoxy methyl oleate/linoleate/linolenate (EMO/EMLO/EMLEN). The obtained epoxy fatty acid derivatives were used in resin formulations together with other reactants or in the synthesis of multifunctional oligomer resins using enzyme catalysis. All resins were cured using different polymerization techniques to form thermosets with a wide variety of properties.Multifunctional oligomer resin were synthesized using Candida Antarctica lipase-B (CALB) as enzyme. It was demonstrated that the synthesis was efficient and the oligomers were obtained from “one-pot” route. In addition, the selectivity of CALB was useful in preserving a variety of functional groups (epoxides, alkenes and thiols) in the final oligomers. The oligomers were cross-linked by either thiol-ene chemistry or cationic polymerization resulting in functional thermosets. It was further shown that surface properties of the cured thermosets could be changed by using post-functionalization.Pure fatty acid methyl esters cure into soft materials. An approach in increasing the thermal and mechanical properties was investigated. The 3 different epoxy functional methyl esters together with a furan-2,5-dicarboxylic acid derivative were investigated in the formation of thermosets. Glass transition temperature (Tg) below 0 °C and above 100 °C were obtained by varying the stoichiometric feed of the reactants.The thermal curing of EFA as a one-component system was investigated by model studies showing that a self-catalyzed process occur. EFA thermally cures into a thermoset without the need of an added catalyst. Furthermore, the thermoset showed adhesive properties.Crude mixture containing methyl stearate, EMO, EMLO and EMLEN obtained from epoxidized linseed oil were investigated as reactive diluent in coil-coatings. The mixture was also compared with commercially available reactive diluents such as fatty acid methyl esters (FAME) obtained from rapeseed oil. The results obtained showed that more fatty methyl esters could be incorporated in the final thermoset when using the epoxidized linseed oil fatty acid derivatives.Real-time Fourier-transform infrared spectroscopy (RT-FTIR) was used during most of the work presented in the thesis and proved to be a powerful tool in monitoring the different reactions and comparing relative reaction rates.

Abstract [sv]

I arbetet som presenteras i denna avhandling undersöktes epoxifettsyraderivat vid bildandet av härdplaster för ytmodifieringsapplikationer. Förnybara råvarorna björkbark och epoxiderad linolja andändes för att erhålla epoxifettsyraderivaten. Björkbarken användes för att isolera 9,10-epoxi-18-hydroxidekansyra (EFA) och epoxoderad linolja användes för att extrahera metylstearat och 3 olika epoximetylestrar: epoximetyl oleat/linoleat/linolenat (EMO/EMLO/EMLEN). Epoxifettsyraderivaten användes i olika hartsformuleringar tillammans med andra reaktanter eller vid syntes av multifunktionella oligomerhartser med hjälp av enzymatisk katalys. Med hjälp av olika polymerisationstekniker så härdades alla hartser till härdplaster med en mängd olika egenskaper.Multifunktionella oligomerhartser syntetiserades med hjälp av enzymet Candida Antarctica lipas-b (CALB). Syntesen visade sig vara effektiv och oligomererna erhölls från en sats. Dessutom var selektiviteten hos CALB användbar för att bevara en mängd olika funktionella grupper (epoxider, alkener och tioler) i de slutliga oligomererna. Tiol-ene kemi eller katjonisk polymerisation användes sedan för att härda oligomererna, vilket resulterade i funktionella härdplaster. Vidare visades att ytegenskaperna kunde ändras genom möjlighet till funktionalisering av härdplasterna.Mjuka material återfås då man härdar rena fettsyrametylestrar. Ett sätt att öka de termiska och mekaniska egenskaperna undersöktes. De tre olika epoxifunktionella metylestrarna tillsammans med furan-2,5-dicarboxylsyraderivat blandades i hartser och härdades. Genom att variera de stökiometriska förhållanderna av reaktanterna så erhölls glastemperaturer (Tg) under 0°C och över 100 °C.Undersökningen av termisk härdning av EFA som ett komponentssystem studerades genom modelstudier. Studierna visade att en självkatalyserad process sker då EFA värms upp. Detta leder således till att EFA kan termiskt härda utan behov av en tillsatt katalysator. Dessutom uppvisade härdplasten limegenskaper.Rå blandning innehållande metylstearate, EMO, EMLO och EMLEN som erhölls från epoxiderad linolja undersöktes som en reaktiv utspädare i spolbeläggningar. Blandningen jämfördes även med kommersiellt tillgängliga utspädare så som fettsyrametylestrar (FAME) erhållna från rapsolja. De erhållna resultaten påvisade att fler feta metylestrar kunde integreras i slutliga beläggningen när fettsyraderivat från epoxideradlinolja användes.Realtids Fourier-transform infrarödspektroskopi (RT-FTIR) användes under det mesta av arbetet som presenteras i denna avhandling. RT-FTIR visade sig vara ett kraftfullt vektyg för att övervaka de olika reaktionerna samt jämföra relativa reaktionshastigheter.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 69
Series
TRITA-CBH-FOU ; 2019:28
Keywords
epoxy, vegetable oils, birch bark, thermoset, bio-based, fatty acid, renewable resources
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-250682 (URN)978-91-7873-184-8 (ISBN)
Public defence
2019-05-29, Sal F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190506

Available from: 2019-05-06 Created: 2019-05-02 Last updated: 2022-06-26Bibliographically approved
2. Enzyme catalysis towards bio-based UV-curable buildingblocks
Open this publication in new window or tab >>Enzyme catalysis towards bio-based UV-curable buildingblocks
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Polymeric materials are found in virtually all areas of daily life; they are found in everything from packages keeping our food safe to the buildings where we spend our days, and the production is a worldwide industry. Although polymeric materials play a big part in sustainable solution’s, a lot can be done to develop more environmental methods for producing them. Both the process conditions and the resources that go in are important to consider. As more people understand that we need to manage our planet’s resources and ecosystem differently the demand for sustainable materials is increasing.

Catalysis is a key for designing chemistry for the environment and an interesting alternative is enzyme catalysis. Enzymes are proteins working as catalysts in biochemical reactions. One of the most prominent features of enzymes’ is their selectivity, which means that they have preferences towards forming one product over others. Using enzymes’ as catalysts in synthetic chemical reactions the selectivity can be used to produce a wide range of products without side reaction occurring. Further benefits of using enzyme catalysis include high rate acceleration and working under mild reaction conditions.

In the work presented here the selectivity and efficiency of enzymes have been combined with photochemistry in new efficient methods for the synthesis ofpolymeric materials. The enzymes used were the well-known lipase B form Candida antarctica and an esterase/acyltransferase from Mycobacterium smegmatis.

The thesis divides into three parts in which three kinds of components were synthesized by enzyme catalysis: (i) unsaturated polyesters; (ii) vinyl ether building-blocks; and (iii) bio-based polyamides. In the first two parts the efficiency and selectivity of enzyme catalysis at low temperatures were utilized to synthesize building-blocks that can be further used for photopolymerization. By using enzyme catalysis structures that can be difficult or even impossible to access with conventional chemistry have been made. In part (iii) photochemistry was used to synthesize a monomer that was polymerized by enzyme catalysis to produce polyamides.

All three parts presented in this thesis show the potential of the combination of enzymes and photochemistry to give access to polymeric materials under benign conditions. The work thus advances the capacity to manufacture building-blocks to create new sustainable polymeric materials.

Abstract [sv]

Polymermaterial används till oändligt mycket. Produktion av dem sker i hela världen, men det finns mycket att göra för att tillverka materialen på ett miljövänligare sätt. Det gäller både själva tillverkningsprocessen och vilka råvaror som används i dem. Efterfrågan av förnyelsebara råvaror till denna produktion ökar med medvetenheten om att vi måste hantera vår planets resurser och ekosystemet på ett hållbart sätt.

Katalys är en nyckel för att utforma miljövänliga processer. Till det går det attanvända enzymer. De är proteiner som fungerar som katalysatorer i biokemiska reaktioner. En av de mest framträdande egenskaperna hos dem är deras selektivitet. Det vill säga att de har en preferens för att bilda en viss produkt framför andra möjliga. Selektiviteten möjliggör syntes av spännande molekyler, utan sidoreaktioner. Fler fördelar med enzymkatalys inkluderar snabba reaktionshastigheter och möjligheten att utföra reaktioner på ett milt sätt.

I denna avhandling har selektiviteten och effektiviteten hos enzymer kombinerats med fotopolymerisation. Det ger nya effektiva metoder för att syntetisera biobaserade polymermaterial. De använda enzymerna är lipas B från Candida antarctica och ett esteras/acyltransferas från Mycobacterium smegmatis.

Avhandlingen delas upp i tre delar utifrån vilken typ av komponent som syntetiserats genom enzymkatalys: (i) omättade polyestrar; (ii) vinyleterfunktionella byggstenar; och (iii) biobaserade polyamider. I de två första delarna kombinerades de selektiva egenskaperna hos enzymermed deras förmåga att utföra effektiv katalys under milda reaktionsbetingelser. Detta för att göra byggstenar som kan reagera vidare i fotopolymerisation och bilda polymera material. Enzymkatalysen möjliggjorde skapandet av byggstenar som kan vara svåra eller rent avomöjliga att producera med konventionell kemi. I del tre användes fotokemin istället i det första steget för att syntetisera en monomer som sedan polymeriserades genom enzymkatalys till polyamider.

Alla delarna som presenteras i denna avhandling visar potentialen i att kombinera enzymkatalys med fotokemi under milda betingelser för att skapa polymermaterial. Arbetet avancerar därmed kapaciteten för att hantera och tillverka byggstenar som kan användas för att tillverka nya polymeramaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 58
Series
TRITA-CBH-FOU ; 2019:37
Keywords
Enzyme, Enzymatic Polymerizations, Biocatalysis, Lipase, CalB, MsAcT, Substrate specificity, Selectivity, Polymer Chemistry, UV-curring
National Category
Biocatalysis and Enzyme Technology Polymer Chemistry
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-257773 (URN)978-91-7873-283-8 (ISBN)
Public defence
2019-09-27, M3, Brinellvägen 64, Maskin, våningsplan 2, KTH Campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2019-09-05

Available from: 2019-09-05 Created: 2019-09-04 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Finnveden, MajaNameer, SamerJohansson, Mats K GMartinelle, Mats

Search in DiVA

By author/editor
Finnveden, MajaNameer, SamerJohansson, Mats K GMartinelle, Mats
By organisation
Industrial BiotechnologyCoating TechnologyFibre and Polymer Technology
In the same journal
Macromolecular Chemistry and Physics
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 787 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf