Open this publication in new window or tab >>2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Polymeric materials are found in virtually all areas of daily life; they are found in everything from packages keeping our food safe to the buildings where we spend our days, and the production is a worldwide industry. Although polymeric materials play a big part in sustainable solution’s, a lot can be done to develop more environmental methods for producing them. Both the process conditions and the resources that go in are important to consider. As more people understand that we need to manage our planet’s resources and ecosystem differently the demand for sustainable materials is increasing.
Catalysis is a key for designing chemistry for the environment and an interesting alternative is enzyme catalysis. Enzymes are proteins working as catalysts in biochemical reactions. One of the most prominent features of enzymes’ is their selectivity, which means that they have preferences towards forming one product over others. Using enzymes’ as catalysts in synthetic chemical reactions the selectivity can be used to produce a wide range of products without side reaction occurring. Further benefits of using enzyme catalysis include high rate acceleration and working under mild reaction conditions.
In the work presented here the selectivity and efficiency of enzymes have been combined with photochemistry in new efficient methods for the synthesis ofpolymeric materials. The enzymes used were the well-known lipase B form Candida antarctica and an esterase/acyltransferase from Mycobacterium smegmatis.
The thesis divides into three parts in which three kinds of components were synthesized by enzyme catalysis: (i) unsaturated polyesters; (ii) vinyl ether building-blocks; and (iii) bio-based polyamides. In the first two parts the efficiency and selectivity of enzyme catalysis at low temperatures were utilized to synthesize building-blocks that can be further used for photopolymerization. By using enzyme catalysis structures that can be difficult or even impossible to access with conventional chemistry have been made. In part (iii) photochemistry was used to synthesize a monomer that was polymerized by enzyme catalysis to produce polyamides.
All three parts presented in this thesis show the potential of the combination of enzymes and photochemistry to give access to polymeric materials under benign conditions. The work thus advances the capacity to manufacture building-blocks to create new sustainable polymeric materials.
Abstract [sv]
Polymermaterial används till oändligt mycket. Produktion av dem sker i hela världen, men det finns mycket att göra för att tillverka materialen på ett miljövänligare sätt. Det gäller både själva tillverkningsprocessen och vilka råvaror som används i dem. Efterfrågan av förnyelsebara råvaror till denna produktion ökar med medvetenheten om att vi måste hantera vår planets resurser och ekosystemet på ett hållbart sätt.
Katalys är en nyckel för att utforma miljövänliga processer. Till det går det attanvända enzymer. De är proteiner som fungerar som katalysatorer i biokemiska reaktioner. En av de mest framträdande egenskaperna hos dem är deras selektivitet. Det vill säga att de har en preferens för att bilda en viss produkt framför andra möjliga. Selektiviteten möjliggör syntes av spännande molekyler, utan sidoreaktioner. Fler fördelar med enzymkatalys inkluderar snabba reaktionshastigheter och möjligheten att utföra reaktioner på ett milt sätt.
I denna avhandling har selektiviteten och effektiviteten hos enzymer kombinerats med fotopolymerisation. Det ger nya effektiva metoder för att syntetisera biobaserade polymermaterial. De använda enzymerna är lipas B från Candida antarctica och ett esteras/acyltransferas från Mycobacterium smegmatis.
Avhandlingen delas upp i tre delar utifrån vilken typ av komponent som syntetiserats genom enzymkatalys: (i) omättade polyestrar; (ii) vinyleterfunktionella byggstenar; och (iii) biobaserade polyamider. I de två första delarna kombinerades de selektiva egenskaperna hos enzymermed deras förmåga att utföra effektiv katalys under milda reaktionsbetingelser. Detta för att göra byggstenar som kan reagera vidare i fotopolymerisation och bilda polymera material. Enzymkatalysen möjliggjorde skapandet av byggstenar som kan vara svåra eller rent avomöjliga att producera med konventionell kemi. I del tre användes fotokemin istället i det första steget för att syntetisera en monomer som sedan polymeriserades genom enzymkatalys till polyamider.
Alla delarna som presenteras i denna avhandling visar potentialen i att kombinera enzymkatalys med fotokemi under milda betingelser för att skapa polymermaterial. Arbetet avancerar därmed kapaciteten för att hantera och tillverka byggstenar som kan användas för att tillverka nya polymeramaterial.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 58
Series
TRITA-CBH-FOU ; 2019:37
Keywords
Enzyme, Enzymatic Polymerizations, Biocatalysis, Lipase, CalB, MsAcT, Substrate specificity, Selectivity, Polymer Chemistry, UV-curring
National Category
Biocatalysis and Enzyme Technology Polymer Chemistry
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-257773 (URN)978-91-7873-283-8 (ISBN)
Public defence
2019-09-27, M3, Brinellvägen 64, Maskin, våningsplan 2, KTH Campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 2019-09-05
2019-09-052019-09-042022-06-26Bibliographically approved