Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. Prince of Songkla University, Thailand.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.ORCID-id: 0000-0002-2139-7460
Vise andre og tillknytning
2016 (engelsk)Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

The influence of the combined exposure to water and temperature on the behaviour of polylactide/sisal biocomposites coupled with maleic acid anhydride was assessed through accelerated hydrothermal ageing. The biocomposites were immersed in water at temperatures from 65 to 85 °C, between the glass transition and cold crystallisation of the PLA matrix. The results showed that the most influent factor for water absorption was the percentage of fibres, followed by the presence of coupling agent, whereas the effect of the temperature was not significant. Deep assessment was devoted to biocomposites subjected to hydrothermal ageing at 85 °C, since it represents the extreme degrading condition. The morphology and crystallinity of the biocomposites were evaluated by means of X-Ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The viscoelastic and thermal performance were assessed by means of dynamic mechanic thermal analysis (DMTA) and thermogravimetry (TGA). The presence of sisal generally diminished the thermal stability of the biocomposites, which was mitigated by the addition of the coupling agent. After composite preparation, the effectiveness of the sisal fibre was improved by the crystallisation of PLA around sisal, which increased the storage modulus and reduced the dampening factor. The presence of the coupling agent strengthened this effect. After hydrothermal ageing, crystallisation was promoted in all biocomposites therefore showing more fragile behaviour evidencing pores and cracks. However, the addition of coupling agent in the formulation of biocomposites contributed in all cases to minimise the effects of hydrothermal ageing.

sted, utgiver, år, opplag, sider
Elsevier, 2016.
Emneord [en]
Biocomposites, Degradation, Hydrothermal ageing, Mechanical fibre effectiveness, Natural fibres, Performance, Polylactide (PLA), Sisal, Coupling agents, Enamels, Fibers, Field emission microscopes, Glass transition, Natural fibers, Polyesters, Scanning electron microscopy, Thermoanalysis, Thermodynamic stability, Thermogravimetric analysis, Viscoelasticity, Water absorption, X ray diffraction, Bio-composites, Poly lactide, Composite materials
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-186799DOI: 10.1016/j.polymdegradstab.2016.03.038ISI: 000393846000011Scopus ID: 2-s2.0-84962695727OAI: oai:DiVA.org:kth-186799DiVA, id: diva2:930301
Merknad

QC 20160523

Tilgjengelig fra: 2016-05-23 Laget: 2016-05-13 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Strömberg, EmmaKarlsson, Sigbritt

Søk i DiVA

Av forfatter/redaktør
Kittikorn, ThorsakStrömberg, EmmaEk, MonicaKarlsson, Sigbritt
Av organisasjonen
I samme tidsskrift
Polymer degradation and stability

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 393 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf