Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Slow strain rate tensile tests on notched specimens of copper
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap. (ENHETEN EGENSKAPER)
KTH, Skolan för industriell teknik och management (ITM). (ENHETEN EGENSKAPER)ORCID-id: 0000-0002-8494-3983
2016 (engelsk)Inngår i: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 663, s. 108-115Artikkel i tidsskrift (Annet vitenskapelig) Published
Resurstyp
Text
Abstract [en]

In this study, slow strain rate tensile tests have been performed on phosphorus alloyed copper under uniaxial and multiaxial stress states at 75 and 125 °C with two strain rates 10-6 and 10-7 s-1. Multiaxial stress states have been introduced by incorporating three different notch geometries on the uniaxial specimens. It has shown that the presence of the notches decreased the strength and ductility of copper. Ductility exhaustion was likely to be the dominant rupture mechanism. Finite element analysis was conducted to compare with the experimental results with a physically based model for stress strain flow curves without fitting parameters. The model could successfully describe the experimental data, and it could predict the dependence of acuity, temperature and strain rate in the multiaxial tests.

sted, utgiver, år, opplag, sider
Elsevier, 2016. Vol. 663, s. 108-115
Emneord [en]
Copper, Finite element method, Multiaxial stress state, Notched specimen, Slow strain rate tensile test, Curve fitting, Ductility, Stress-strain curves, Tensile testing, Ductility exhaustion, Fitting parameters, Notched specimens, Physically based modeling, Rupture mechanism, Strength and ductilities, Strain rate
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-186988DOI: 10.1016/j.msea.2016.03.111ISI: 000375499500014Scopus ID: 2-s2.0-84961999795OAI: oai:DiVA.org:kth-186988DiVA, id: diva2:930553
Merknad

QC 20160524

Tilgjengelig fra: 2016-05-24 Laget: 2016-05-16 Sist oppdatert: 2018-05-16bibliografisk kontrollert
Inngår i avhandling
1. Fundamental models and testing of creep in copper
Åpne denne publikasjonen i ny fane eller vindu >>Fundamental models and testing of creep in copper
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Many sustainable technologies for energy production, for example, generation IV nuclear system, demand the use of materials operating at elevated temperatures for long duration of up to 60 years. Requirements that are even more stringent are found for creep exposed copper canisters for disposal of spent nuclear waste. The canisters should stay intact for thousands of years. Traditional design procedures that involve empirical extrapolation of creep data are no longer reliable for such extended times. Instead physically based material models have to be used.

The final stage of creep before rupture, tertiary creep has been handled with empirical methods with adjustable parameters in the past, which makes it difficult to safely identify the controlling mechanisms. A physically based model has been developed for copper taking the substructure, cavitation and necking into account.

To improve the understanding of the important contribution from particles to the creep strength an earlier formulated model has analyzed and further developed. The model has successfully been able to describe the temperature and stress dependence of precipitation hardening for copper-cobalt alloys, where this contribution totally dominates the creep strength.

Multiaxial stress states are crucial for practically all high temperature applications. Fundamental material models have been extended for such conditions. These models have been compared with strain and stress controlled tests for notched specimens that have been performed.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2018. s. 149
Serie
TRITA-ITM-AVL ; 2018:25
Emneord
Copper; Creep tests; Multiaxial stress state; Finite element method; Basic modelling; Tertiary creep; Precipitation hardening
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-227968 (URN)978-91-7729-773-4 (ISBN)
Disputas
2018-06-12, Kollegiesalen, Brinellvägen 8, floor 4, stockholm, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-05-17 Laget: 2018-05-15 Sist oppdatert: 2019-08-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Sandström, Rolf

Søk i DiVA

Av forfatter/redaktør
Sui, FangfeiSandström, Rolf
Av organisasjonen
I samme tidsskrift
Materials Science & Engineering: A

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf