Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Brain Computer Interface-Based Algorithm For The Detection Of Finger Movement
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB.
University of Belgrade, Sebia.
2012 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Refereegranskat)
Abstract [en]

User of Brain Computer Interface system stays in “idle state” between executions of motor task or imagining one. Movement-based BCIs can operate in synchronous and asynchronous mode and in both cases in order to make the system robust, it is necessary that the system is able to distinguish with certainty idle state from the initiation of the movement. We propose computing method that determines the probability of subject's intention to make movement in comparison to idle state. We therefore asked 4 subjects between 20-30 years of age to perform the task of pressing the taster button by thumb while their EEG recordings were obtained. First, the subjects performed motor task at instants defined with the animation shown on screen and second, subjects performed self-initiated movement. Movement onsets were identified by voltage change when taster sensor was pressed while analysis was based on the Event Related Desynchronisation (ERD). This neurophysiological phenomenon refers to the decrease of the EEG signal power just before the voluntary movement onset (pre-movement state). Features of the extracted signals were determined by applying one of the following methods: Welch's method, Burg's algorithm or wavelet transform. In order to distinguish data in the two states, we performed classification by using Support Vector Machine (SVM) method. Results showed that SVM classifier was able to anticipate up to 78% of the movements executed.

Ort, förlag, år, upplaga, sidor
2012. Vol. 7, s. 157-
Nationell ämneskategori
Datavetenskap (datalogi) Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:kth:diva-191563OAI: oai:DiVA.org:kth-191563DiVA, id: diva2:957395
Konferens
FENS Forum, Barcelona, Spain
Anmärkning

QC 20160902

Tillgänglig från: 2016-09-01 Skapad: 2016-09-01 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://fens2012.meetingxpert.net/FENS_331/poster_35782/program.aspx/anchor35782

Sök vidare i DiVA

Av författaren/redaktören
Belic, Jovana
Av organisationen
Beräkningsbiologi, CB
Datavetenskap (datalogi)Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 432 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf