Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
OLLDA: A Supervised and Dynamic Topic Mining Framework in Twitter
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-7786-9551
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-4722-0823
2015 (Engelska)Ingår i: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, s. 1354-1359Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Analyzing media in real-time is of great importance with social media platforms at the epicenter of crunching, digesting and disseminating content to individuals connected to these platforms. Within this context, topic models, specially LDA, have gained strong momentum due to their scalability, inference power and their compact semantics. Although, state of the art topic models come short in handling streaming large chunks of data arriving dynamically onto the platform, thus hindering their quality of interpretation as well as their adaptability to information overload. As a result, in this manuscript we propose for a labelled and online extension to LDA (OLLDA), which incorporates supervision through external labeling and capability of quickly digesting real-time updates thus making it more adaptive to Twitter and platforms alike. Our proposed extension has capability of handling large quantities of newly arrived documents in a stream, and at the same time, is capable of achieving high topic inference quality given the short and often sloppy text of tweets. Our approach mainly uses an approximate inference technique based on variational inference coupled with a labeled LDA model. We conclude by presenting experiments using a one year crawl of Twitter data that shows significantly improved topical inference as well as temporal user profile classification when compared to state of the art baselines.

Ort, förlag, år, upplaga, sidor
2015. s. 1354-1359
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-192057DOI: 10.1109/ICDMW.2015.132ISI: 000380556700183Scopus ID: 2-s2.0-84964797270ISBN: 978-1-4673-8493-3 (tryckt)OAI: oai:DiVA.org:kth-192057DiVA, id: diva2:958261
Konferens
IEEE 15th International Conference on Data Mining Workshops (ICDMW), NOV 14-17, 2015, ATlantic city, NJ
Anmärkning

QC 20160906

Tillgänglig från: 2016-09-06 Skapad: 2016-09-05 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Jaradat, ShathaMatskin, Mihhail
Av organisationen
Programvaruteknik och Datorsystem, SCS
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 98 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf