Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High Temperature Passive Components for Extreme Environments
KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.ORCID-id: 0000-0001-6184-6470
KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.ORCID-id: 0000-0002-1755-1365
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Silicon carbide is an excellent candidate when high temperature power electronics applications are considered. Integrated circuits as well as several power devices have been tested at high temperature. However, little attention has been paid to high temperature passive components that could enable the full SiC potential. In this work, the high temperature performances of different passive components have been studied. Integrated capacitors in bipolar SiC technology has been tested up to 300 °C and, two different designs of inductors have been tested up to 600 °C.

Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-192625OAI: oai:DiVA.org:kth-192625DiVA, id: diva2:971371
Anmärkning

QC 20160921

Tillgänglig från: 2016-09-16 Skapad: 2016-09-16 Senast uppdaterad: 2016-09-21Bibliografiskt granskad
Ingår i avhandling
1. Extreme Implementations of Wide-Bandgap Semiconductors in Power Electronics
Öppna denna publikation i ny flik eller fönster >>Extreme Implementations of Wide-Bandgap Semiconductors in Power Electronics
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium-nitride (GaN) allow higher voltage ratings, lower on-state voltage drops, higher switching frequencies, and higher maximum temperatures. All these advantages make them an attractive choice when high-power density and high-efficiency converters are targeted. Two different gate-driver designs for SiC power devices are presented. First, a dual-function gate-driver for a power module populated with SiC junction field-effect transistors that finds a trade-off between fast switching speeds and a low oscillative performance has been presented and experimentally verified. Second, a gate-driver for SiC metal-oxide semiconductor field-effect transistors with a short-circuit protection scheme that is able to protect the converter against short-circuit conditions without compromising the switching performance during normal operation is presented and experimentally validated. The benefits and issues of using parallel-connection as the design strategy for high-efficiency and high-power converters have been presented. In order to evaluate parallel connection, a 312 kVA three-phase SiC inverter with an efficiency of 99.3 % has been designed, built, and experimentally verified. If parallel connection is chosen as design direction, an undesired trade-off between reliability and efficiency is introduced. A reliability analysis has been performed, which has shown that the gate-source voltage stress determines the reliability of the entire system. Decreasing the positive gate-source voltage could increase the reliability without significantly affecting the efficiency. If high-temperature applications are considered, relatively little attention has been paid to passive components for harsh environments. This thesis also addresses high-temperature operation. The high-temperature performance of two different designs of inductors have been tested up to 600_C. Finally, a GaN power field-effect transistor was characterized down to cryogenic temperatures. An 85 % reduction of the on-state resistance was measured at −195_C. Finally, an experimental evaluation of a 1 kW singlephase inverter at low temperatures was performed. A 33 % reduction in losses compared to room temperature was achieved at rated power.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. 101
Serie
TRITA-EE, ISSN 1653-5146 ; 2016:145
Nyckelord
Cryogenic, Gallium Nitride, Gate Driver, Harsh Environments, High Efficiency Converter, High Temperature, MOSFETs, Normally- ON JFETs, Reliability, Silicon Carbide, Wide-Band Gap Semiconductors
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-192626 (URN)978-91-7729-109-1 (ISBN)
Disputation
2016-10-14, Kollegiesalen, Brinellvägen 8, KTH-huset, KTH, Stockholm, 09:53 (Engelska)
Opponent
Handledare
Anmärkning

QC 20160922

Tillgänglig från: 2016-09-22 Skapad: 2016-09-16 Senast uppdaterad: 2020-01-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Colmenares, JuanKargarrazi, SalehElahipanah, HosseinNee, Hans-PeterZetterling, Carl-Mikael
Av organisationen
ElkraftteknikIntegrerade komponenter och kretsar
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1727 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf