Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0003-1270-1616
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0002-9164-0761
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0002-0349-0645
Vise andre og tillknytning
2016 (engelsk)Inngår i: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 129, s. 61-73Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.

sted, utgiver, år, opplag, sider
Elsevier, 2016. Vol. 129, s. 61-73
Emneord [en]
Mercury, Magnetosheath, Bow shock, MESSENGER, Plasmoids, Magnetosheath jets
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-192709DOI: 10.1016/j.pss.2016.06.002ISI: 000381323800006Scopus ID: 2-s2.0-85006710378OAI: oai:DiVA.org:kth-192709DiVA, id: diva2:974404
Merknad

QC 20160926

Tilgjengelig fra: 2016-09-26 Laget: 2016-09-20 Sist oppdatert: 2017-11-21bibliografisk kontrollert
Inngår i avhandling
1. Structures and processes in the Mercury magnetosphere
Åpne denne publikasjonen i ny fane eller vindu >>Structures and processes in the Mercury magnetosphere
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The mechanisms involved in the transfer of mass and energy from the solar wind to any planetary magnetosphere is considered an important topic in space physics. With the use of the Mercury spacecraft MESSENGER's data, it has been possible to study these processes in an environment different, yet similar, to Earth's. These data have resulted in new knowledge advancing not only the extraterrestrial space plasma research, but also the general space physics field.

 

This thesis aims to investigate mechanisms for the transfer of mass and energy into Mercury’s magnetosphere, and magnetospheric regions affected by, and processes directly driven by, these. The work includes the Kelvin-Helmholtz instability (KHI) at the magnetopause, which is one of the main drivers for mass and energy transfer on Earth, the low-latitude boundary layer (LLBL), which is in direct connection to the magnetopause and proposed to be affected by the KHI, magnetospheric ultra-low frequency (ULF) waves driven by the KHI, and isolated magnetic field structures in the magnetosheath as possible analogues to the Earth magnetosheath plasmoids and jets.

 

Kelvin-Helmholtz waves (KHW) and the LLBL are identified and characterized. The KHWs are observed almost exclusively on the duskside magnetopause, something that has not been observed on Earth. In contrast, the LLBL shows an opposite asymmetry. Results suggest that the KHI and LLBL are connected, possibly by the LLBL creating the asymmetry observed for the KHWs.

 

Isolated changes of the total magnetic field strength in the magnetosheath are identified. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggest that they are analogues to diamagnetic plasmoids found on Earth. No clear analogues to paramagnetic plasmoids are found.  

 

Distinct magnetospheric ULF wave signatures are detected frequently in close connection to KHWs. Results from the polarization analysis on the dayside ULF waves indicate that the majority of these are most probably driven by the KHI. In general, likely KHI driven ULF waves are observed frequently in the Hermean magnetosphere. 

Although similar in many aspects, Mercury and Earth show fundamental differences in processes and structures, making Mercury a highly interesting planet to study to increase our knowledge of Earth-like planets.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2017. s. 53
Serie
TRITA-EE, ISSN 1653-5146 ; 2017:029
Emneord
Mercury, MESSENGER, magnetosphere, processes, structures
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-207173 (URN)978-91-7729-349-1 (ISBN)
Disputas
2017-06-15, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish National Space Board, 122/11
Merknad

QC 20170519

Tilgjengelig fra: 2017-05-19 Laget: 2017-05-18 Sist oppdatert: 2017-05-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Karlsson, TomasLiljeblad, ElisabetKullen, Anita
Av organisasjonen
I samme tidsskrift
Planetary and Space Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 72 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf