Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-4388-8970
Department of Chemical Engineering, McMaster University.
Department of Pulp and Paper Technology, Karadeniz Technical University.
Cellutech AB.
Show others and affiliations
2016 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, no 9, p. 2801-2811Article in journal (Refereed) Published
Abstract [en]

The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 17, no 9, p. 2801-2811
Keywords [en]
Adsorption, Amorphous films, Cellulose, Entropy, Hydrogen bonds, Molecules, Oxide films, Polymers, Surface plasmon resonance, Temperature distribution, Van der Waals forces, Cellulose nanocrystal (CNC), High molecular weight, Increasing temperatures, N methylmorpholine N oxide, Reflectometry measurements, Regenerated cellulose films, Surface plasmon resonance spectroscopy, Temperature dependence
National Category
Nano Technology Paper, Pulp and Fiber Technology Polymer Chemistry Physical Chemistry Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-193110DOI: 10.1021/acs.biomac.6b00561ISI: 000383213200004PubMedID: 27476615Scopus ID: 2-s2.0-84986911764OAI: oai:DiVA.org:kth-193110DiVA, id: diva2:975200
Funder
Knowledge FoundationSwedish Foundation for Strategic Research Knut and Alice Wallenberg Foundation
Note

QC 20161005

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2019-04-08Bibliographically approved
In thesis
1. Design of Cellulose-based Materials by Supramolecular Assemblies
Open this publication in new window or tab >>Design of Cellulose-based Materials by Supramolecular Assemblies
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Due to climate change and plastic pollution, there is an increasing demand for bio-based materials with similar properties to those of common plastics yet biodegradable. In this respect, cellulose is a strong candidate that is already being refined on a large industrial scale, but the properties differ significantly from those of common plastics in terms of shapeability and water-resilience.

This thesis investigates how supramolecular interactions can be used to tailor the properties of cellulose-based materials by modifying cellulose surfaces or control the assembly of cellulose nanofibrils (CNFs). Most of the work is a fundamental study on interactions in aqueous environments, but some material concepts are presented and potential applications are discussed.

The first part deals with the modification of cellulose by the spontaneous adsorption of xyloglucan or polyelectrolytes. The results indicate that xyloglucan adsorbs to cellulose due to the increased entropy of water released from the surfaces, which is similar to the increased entropy of released counter-ions that drives polyelectrolyte adsorption. The polyelectrolyte adsorption depends on the charge of the cellulose up to a limit after which the charge density affects only the first adsorbed layer in a multilayer formation.

Latex nanoparticles with polyelectrolyte coronas can be adsorbed onto cellulose in order to prepare hydrophobic cellulose surfaces with strong and ductile wet adhesion, provided the glass transition of the core is below the ambient temperature.

The second part of the thesis seeks to explain the interactions between different types of cellulose nanofibrils in the presence of different ions, using a model consisting of ion-ion correlation and specific ion effects, which can be employed to rationally design water-resilient and transparent nanocellulose films. The addition of small amounts of alginate also creates interpenetrating double networks, and these networks lead to a synergy which improves both the stiffness and the ductility of the films in water.

A network model has been developed to understand these materials, with the aim to explain the properties of fibril networks, based on parameters such as the aspect ratio of the fibrils, the solidity of the network, and the ion-induced interactions that increase the friction between fibrils. With the help of this network model and the model for ion-induced interactions, we have created films with wet-strengths surpassing those of common plastics, or a ductility suitable for hygroplastic forming into water-resilient and biodegradable packages. Due to their transparency, water content, and the biocompatibility of cellulose, these materials are also suitable for biomaterial or bioelectronics applications. 

Abstract [sv]

På grund av klimatförändringar och ständigt ökande plastföroreningar finns det en växande efterfrågan på biobaserade material med egenskaper som liknar dem hos vanliga plaster och som samtidigt är biologiskt nedbrytbara. I detta avseende är cellulosa är en stark kandidat som redan framställs i stor industriell skala, men egenskaperna skiljer sig markant från plasternas med avseende på formbarhet och vattentålighet.

Denna avhandling undersöker hur supramolekylära interaktioner kan användas för att skräddarsy egenskaperna hos cellulosa-baserade material genom att modifiera cellulosaytor eller styra hur cellulosa nanofibriller (CNFs) sätts samman. Huvuddelen av arbetet berör grundläggande studier kring interaktioner i vatten, men några materialkoncept och potentiella tillämpningar diskuteras.

Den första delen avhandlar hur spontan adsorption av xyloglukan eller polyelektrolyter kan användas för att modifiera cellulosa. Resultaten indikerar att xyloglukan adsorberar till cellulosa på grund av den ökade entropin hos vatten som frigörs från ytorna, vilket liknar den ökade entropin hos frigjorda motjoner som driver polyelektrolytadsorption. Adsorptionen av polyeletrolyter beror på cellulosans laddning upp till en viss gräns, varefter laddningstätheten endast påverkar adsorptionen i första lagret i en multilager formering.

Adsorption av latexnanopartiklar med en korona av polyeletrolyter, ger hydrofoba cellulosaytor med stark och töjbar, våt vidhäftning, om kärnans glasövergång sker vid lägre temperatur än omgivningens.

Syftet med den andra delen av avhandlingen är att förklara interaktioner mellan olika typer av cellulosa nanofibriller i närvaro av olika joner. Detta görs med en modell bestående av jon-jonkorrelation och specifika joneffekter, som kan användas för rationell design av vattentåliga och transparenta filmer av nanocellulosa. Tillsatsen av små mängder alginat skapar också interpenetrerande dubbla nätverk, och dessa nätverk leder till en synergi som förbättrar både styvheten och töjbarheten hos filmerna i vatten.

En nätverksmodell utvecklades för att förstå dessa material. Modellen klarar av att förklara hur egenskaperna hos fibrillnätverk beror av parametrar som fibrillernas geometri, nätverkets soliditet och friktionen som induceras av specifika joner. Med hjälp av nätverksmodellen och modellen för joninducerade interaktioner kan vi skapa filmer med våtstyrka som överträffar den hos många plaster, eller med en töjbarhet som är lämplig för hygroplastisk formpressning till vattentåliga och biologiskt nedbrytbara förpackningar. Filmernas transparens och vatteninnehåll, samt biokompatibiliteten hos cellulosa, gör dem lämpliga som biomaterial eller för bioelektronikapplikationer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2019. p. 66
Series
TRITA-CBH-FOU ; 2019:19
Keywords
Adhesion, adsorption, alginate, assemblies, biodegradable, biomaterials, biopolymers, cellulose, cellulose nanofibrils, CNFs, gas barrier, hemicellulose, interfaces, ion-ion correlation, latex, layer-by-layer, metal-ligand complexes, montmorillonite, multivalent ions, packaging, PISA, polyelectrolyte multilayers, polyelectrolytes, polysaccharides, RAFT, renewable, specific ion effects, supramolecular, surfaces, sustainable, thin films, water-resilient, xyloglucan
National Category
Chemical Sciences Materials Chemistry Polymer Chemistry Physical Chemistry Nano Technology Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-248046 (URN)978-91-7873-161-9 (ISBN)
Public defence
2019-05-10, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20190411

Available from: 2019-04-11 Created: 2019-04-03 Last updated: 2019-04-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Benselfelt, TobiasBrumer, HarryRutland, Mark W.Wågberg, Lars
By organisation
Fibre TechnologyWallenberg Wood Science CenterSurface and Corrosion Science
In the same journal
Biomacromolecules
Nano TechnologyPaper, Pulp and Fiber TechnologyPolymer ChemistryPhysical ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2011 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf