Change search
ReferencesLink to record
Permanent link

Direct link
On Approximating Asymmetric TSP and Related Problems
KTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.
2006 (English)Licentiate thesis, monograph (Other scientific)
Abstract [en]

In this thesis we study problems related to approximation of asymmetric TSP. First we give worst case examples for the famous algorithm due to Frieze, Gabiati and Maffioli for asymmetric TSP with triangle inequality. Some steps in the algorithm consist of arbitrary choices. To prove lower bounds, these choices need to be specified. We show a worst case performance with some deterministic assumptions on the algorithm and then prove an expected worst case performance for a randomised version of the algorithm. The algorithm by Frieze et al. produces a spanning cactus and makes a TSP tour by shortcuts. We have proven that determining if there is a spanning cactus in a general asymmetric graph is an NP-complete problem and that finding a minimum spanning cactus in a complete, directed graph with triangle inequality is equivalent to finding the TSP tour and the problems are equally hard to approximate. We also give three other results; we show a connection between asymmetric TSP and TSP in a bipartite graph, we show that it is NP-hard to find a cycle cover in a bipartite graph without cycles of length six or less and finally we present some results for a new problem with ordered points on the circle.

Place, publisher, year, edition, pages
Stockholm: KTH , 2006. , vi, 87 p.
Trita-CSC-A, ISSN 1653-5723 ; 2006:4
Keyword [en]
Komplexity theory, algorithms, approxiamtion
National Category
Computer Science
URN: urn:nbn:se:kth:diva-3932ISBN: 91-7178-329-6OAI: diva2:10071
2006-05-19, D3, Huvudbyggnaden, Lindstedtsvägen 5, Stockholm, 14:00
QC 20101122Available from: 2006-05-02 Created: 2006-05-02 Last updated: 2010-11-22Bibliographically approved

Open Access in DiVA

fulltext(680 kB)226 downloads
File information
File name FULLTEXT01.pdfFile size 680 kBChecksum MD5
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Palbom, Anna
By organisation
Numerical Analysis and Computer Science, NADA
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 226 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 404 hits
ReferencesLink to record
Permanent link

Direct link