Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Concurrent Dual-band Power Amplifier Model Modification using Dual Two-Tone Test
KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0003-1183-6666
KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-9352-0261
Högskolan i Gävle.
KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-2718-0262
Show others and affiliations
2016 (English)In: European Microwave Week 2016: "Microwaves Everywhere", EuMW 2016 - Conference Proceedings; 46th European Microwave Conference, EuMC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, 186-189 p., 7824309Conference paper, Published paper (Refereed)
Abstract [en]

A dual two-tone technique for the characterization of memory effects in concurrent dual-band transmitters is revisited to modify a 2D-DPD model for the linearization of concurrent dual-band transmitters. By taking into account the individual nonlinear memory effects of the self- and cross-kernels, a new2D modified digital pre-distortion (2D-MDPD) model is proposed,which not only supersedes the linearization performance but also reduces the computational complexity compared to the 2DDPDmodel in terms of a number of floating point operations(FLOPs). Experimental results show an improvement of 1.7 dBin normalized mean square error (NMSE) and a 58% reduction in the number of FLOPs.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2016. 186-189 p., 7824309
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-193635Scopus ID: 2-s2.0-85015185570ISBN: 9782874870439 (print)OAI: oai:DiVA.org:kth-193635DiVA: diva2:1033283
Conference
46th European Microwave Conference, EuMC 2016, London, United Kingdom, 4 October 2016 through 6 October 2016
Note

QC 20161010

Available from: 2016-10-06 Created: 2016-10-06 Last updated: 2017-06-07Bibliographically approved
In thesis
1. Characterization and Linearization of Multi-band Multi-channel RF Power Amplifiers
Open this publication in new window or tab >>Characterization and Linearization of Multi-band Multi-channel RF Power Amplifiers
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The World today is deeply transformed by the advancement in wireless technology. The envision of a smart society where interactions between physical and virtual dimensions of life are intertwined and where human interaction is mediated by machines, e.g., smart phones, demands increasingly more data traffic. This continual increase in data traffic requires re-designing of the wireless technologies for increased system capacity and flexibility. In this thesis, aspects related to behavioral modeling, characterization, and linearization of multi-channel/band power amplifiers (PAs) are discussed.

When building a model of any system, it is advantageous to take into account the knowledge of the physics of the system and include into the model. This approach could help to improve the model performance. In this context, three novel behavioral models and DPD schemes for nonlinear MIMO transmitters are proposed.

To model and compensate distortions in GaN based RF PAs in presence of long-term memory effects, novel models for SISO and concurrent dual-band PAs are proposed. These models are based on a fixed pole expansion technique and have infinite impulse response. They show substantial performance improvement. A behavioral model based on the physical knowledge of the concurrent dual-band PA is derived, and its performance is investigated both for behavioral modeling and compensation of nonlinear distortions.

Two-tone characterization is a fingerprint method for the characterization of memory effects in dynamic nonlinear systems. In this context, two novel techniques are proposed. The first technique is a dual two-tone characterization technique to characterize the memory effects of self- and cross-modulation products in concurrent dual-band transmitter. The second technique is for the characterization and analysis of self- and cross-Volterra kernels of nonlinear 3x3 MIMO systems using three-tone signals.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 59 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2016:185
National Category
Signal Processing
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-197266 (URN)978-91-7729-198-5 (ISBN)
Public defence
2017-02-24, 99133, Kungsbäcksvägen 47, Gävle, 10:15 (English)
Opponent
Supervisors
Note

QC 20161205

Available from: 2016-12-05 Created: 2016-11-30 Last updated: 2016-12-05Bibliographically approved

Open Access in DiVA

amin_et_al(677 kB)60 downloads
File information
File name FULLTEXT01.pdfFile size 677 kBChecksum SHA-512
f6f6d7ffed62aa3150cb278a9941d3160ce3b55456e966f10cf6c1de786dfd574018301397776da62267488aff65e9cac73fd7668bea096d157515418b9781e8
Type fulltextMimetype application/pdf

Other links

Scopushttp://eumweek.cdn.neptuneweb.com/conferences/eumc.html

Search in DiVA

By author/editor
Amin, ShoaibKhan, Zain AhmedHändel, Peter
By organisation
Signal ProcessingACCESS Linnaeus Centre
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 60 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 416 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf