Change search
ReferencesLink to record
Permanent link

Direct link
Study of double core hole excitations in molecules by X-ray double-quantum-coherence signals: a multi-configuration simulation
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
Show others and affiliations
2016 (English)In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 7, no 9, 5922-5933 p.Article in journal (Refereed) Published
Abstract [en]

The multi-configurational self-consistent field method is employed to simulate the two-dimensional all-X-ray double-quantum-coherence (XDQC) spectroscopy, a four-wave mixing signal that provides direct signatures of double core hole (DCH) states. The valence electronic structure is probed by capturing the correlation between the single (SCH) and double core hole states. The state-averaged restricted-activespace self-consistent field (SA-RASSCF) approach is used which can treat the valence, SCH, and DCH states at the same theoretical level, and applies to all types of DCHs (located on one or two atoms, K-edge or L-edge), with both accuracy and efficiency. Orbital relaxation introduced by the core hole(s) and the static electron correlation is properly accounted for. The XDQC process can take place via different intermediate DCH state channels by tuning the pulse frequencies. We simulate the XDQC signals for the three isomers of aminophenol at 8 pulse frequency configurations, covering all DCH pathways involving the N1s and O1s core hole (N1sN1s, O1sO1s and N1sO1s), which reveal different patterns of valence excitations.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 7, no 9, 5922-5933 p.
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-193262DOI: 10.1039/c6sc01571aISI: 000382488500040ScopusID: 2-s2.0-84983489961OAI: diva2:1033620

QC 20161007

Available from: 2016-10-07 Created: 2016-09-30 Last updated: 2016-10-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hua, WeijieLuo, Yi
By organisation
Theoretical Chemistry and Biology
In the same journal
Chemical Science
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

ReferencesLink to record
Permanent link

Direct link