Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scenario reduction, network aggregation, and DC linearisation: which simplifications matter most in operations and planning optimisation?
2016 (English)In: IET Generation, Transmission & Distribution, ISSN 1751-8687, E-ISSN 1751-8695, Vol. 10, no 11, 2748-2755 p.Article in journal (Refereed) Published
Abstract [en]

Power economic studies are challenging because of growing system sizes, the advance of smart grids, and economic, technical, and policy unknowns. Consequently, system models must be simplified so that they can be solved with many scenarios of renewable output, load, and long-run uncertainties. Scenario reduction, network aggregation, and DC linearisation are three common simplifications. The authors compare their errors and computation times for optimal power flow (OPF) and stochastic unit commitment (SUC), using the IEEE 14-, 30-, and 118-bus test systems, and also briefly discuss impacts on generation and transmission planning. The authors find that the most appropriate simplification depends on the study type, and there are no consistent results concerning which simplification is most distorting. The following example conclusions apply to these cases, but not universally; nonetheless, the findings provide information about what simplifications can matter, which is a helpful starting point for practicing modellers. The authors find that linearisation's disregarding of losses distorts total costs in OPFs, but it causes relatively little error in SUC. Scenario reduction reduces OPF computational times with little distortion but is less effective for SUC. Network aggregation decreases computation effort more than linearisation in OPF, but causes little error unless there are few scenarios.

Place, publisher, year, edition, pages
Institution of Engineering and Technology, 2016. Vol. 10, no 11, 2748-2755 p.
Keyword [en]
load flow, power generation dispatch, power generation scheduling, power generation planning, power transmission planning, network aggregation, scenario reduction, DC linearisation, planning optimisation, power economic, smart grids, optimal power flow, OPF, stochastic unit commitment, SUC, IEEE bus test systems, transmission planning, generation planning
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-193217DOI: 10.1049/iet-gtd.2015.1404ISI: 000382791400021Scopus ID: 2-s2.0-84981727271OAI: oai:DiVA.org:kth-193217DiVA: diva2:1034500
Note

QC 20161012

Available from: 2016-10-12 Created: 2016-09-30 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
In the same journal
IET Generation, Transmission & Distribution
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf