Change search
ReferencesLink to record
Permanent link

Direct link
The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation
Show others and affiliations
2016 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, 32371Article in journal (Refereed) Published
Abstract [en]

The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187-385). Here, we show that BR187-385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187-378 or the longer BR120-378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187-385 homo-dimers via an intermolecular beta-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120-166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation.

Place, publisher, year, edition, pages
Nature Publishing Group, 2016. Vol. 6, 32371
National Category
Biological Sciences
URN: urn:nbn:se:kth:diva-193199DOI: 10.1038/srep32371ISI: 000382364300001PubMedID: 27582320ScopusID: 2-s2.0-84984904380OAI: diva2:1034608

QC 20161012

Available from: 2016-10-12 Created: 2016-09-30 Last updated: 2016-10-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Nygren, Per-Ake
By organisation
Protein Technology
In the same journal
Scientific Reports
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

ReferencesLink to record
Permanent link

Direct link