Change search
ReferencesLink to record
Permanent link

Direct link
Dark stars: a review
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. University of Stockholm, Sweden.
2016 (English)In: Reports on progress in physics (Print), ISSN 0034-4885, E-ISSN 1361-6633, Vol. 79, no 6, 066902Article, review/survey (Refereed) Published
Abstract [en]

Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only <= 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (similar to 10 AU) and cool (surface temperatures similar to 10 000 K) objects. We follow the evolution of dark stars from their inception at similar to 1M(circle dot) as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >10(6)M(circle dot) and luminosities >10(10)L(circle dot), making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2016. Vol. 79, no 6, 066902
Keyword [en]
astroparticle physics, dark matter, first stars, cosmology
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-194027DOI: 10.1088/0034-4885/79/6/066902ISI: 000383955500010PubMedID: 27214049ScopusID: 2-s2.0-84979640333OAI: diva2:1037154

QC 20161014

Available from: 2016-10-14 Created: 2016-10-14 Last updated: 2016-10-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Freese, Katherine
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Reports on progress in physics (Print)
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

ReferencesLink to record
Permanent link

Direct link