Change search
ReferencesLink to record
Permanent link

Direct link
Combined EXAFS, XRD, DRIFTS, and DFT Study of Nano Copper Based Catalysts for CO2 Hydrogenation
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
Show others and affiliations
2016 (English)In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 9, 5823-5833 p.Article in journal (Refereed) Published
Abstract [en]

Highly monodispersed CuO nanoparticles (NPs) were synthesized via continuous hydrothermal flow synthesis (CHFS) and then tested as catalysts for CO2 hydrogenation. The catalytic behavior of unsupported 11 nm sized nanoparticles from the same batch was characterized by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS), extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), and catalytic testing, under CO2/H-2 in the temperature range 25-500 degrees C in consistent experimental conditions. This was done to highlight the relationship among structural evolution, surface products, and reaction yields; the experimental results were compared with modeling predictions based on density functional theory (DFT) simulations of the CuO system. In situ DRIFTS revealed the formation of surface formate species at temperatures as low as 70 degrees C. DFT calculations of CO2 hydrogenation on the CuO surface suggested that hydrogenation reduced the CuO surface to Cu2O, which facilitated the formation of formate. In situ EXAFS supported a strong correlation between the Cu2O phase fraction and the formate peak intensity, with the maxima corresponding to where Cu2O was the only detectable phase at 170 degrees C, before the onset of reduction to Cu at 190 degrees C. The concurrent phase and crystallite size evolution were monitored by in situ XRD, which suggested that the CuO NPs were stable in size before the onset of reduction, with smaller Cu2O crystallites being observed from 130 degrees C. Further reduction to Cu from 190 C was followed by a rapid decrease of surface formate and the detection of adsorbed CO from 250 degrees C; these results are in agreement with heterogeneous catalytic tests where surface CO was observed over the same temperature range. Furthermore, CH4 was detected in correspondence with the decomposition of formate and formation of the Cu phase, with a maximum conversion rate of 2.8% measured at 470 degrees C (on completely reduced copper), supporting the indication of independent reaction pathways for the conversion of CO2 to CH4 and CO that was suggested by catalytic tests. The resulting Cu NPs had a final crystallite size of ca. 44 nm at 500 degrees C and retained a significantly active surface.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 6, no 9, 5823-5833 p.
Keyword [en]
CuO, EXAFS, DRIFTS, XRD, CO2 hydrogenation, DFT, continuous hydrothermal flow
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-193400DOI: 10.1021/acscatal.6b01529ISI: 000382714000022ScopusID: 2-s2.0-84984920703OAI: diva2:1037189

QC 20161014

Available from: 2016-10-14 Created: 2016-10-03 Last updated: 2016-10-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lanza, Roberto
By organisation
Chemical Technology
In the same journal
ACS Catalysis
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

ReferencesLink to record
Permanent link

Direct link