Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
X-ray lasing in the CO molecule
2013 (English)In: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 46, no 16Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We theoretically demonstrate the feasibility of x-ray lasing in the CO molecule by the core ionization of the C K- and O K-shell by x-ray free-electron laser sources. Our numerical simulations are based on the solution of generalized Maxwell–Bloch equations, accounting for the electronic and nuclear degrees of freedom. The amplified x-ray emission pulses have an extremely narrow linewidth of about 0.1 eV and a pulse duration shorter than 30 fs. We compare x-ray lasing transitions to the three lowest electronic states of singly ionized CO. The dependence of the lasing efficiency on the spectral width of the x-ray fluorescence band, value and orientation of the electronic transition dipole moment, lifetime of the core-excited state and the duration of the pump pulse is analysed. Using a pre-aligned molecular ensemble substantially increases the amplified emission. Moreover, by controlling the molecular alignment and thereby the alignment of the transition dipole moment polarization, the control of the emitted x-ray radiation is achievable. Preparing the initial vibrational quantum state, the x-ray emission frequency can be tuned within the fluorescence band. The present scheme is applicable to other diatomic systems, thereby extending the spectral range of coherent x-ray radiation sources based on stimulated x-ray emission on bound transitions.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2013. Vol. 46, no 16
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:kth:diva-182306DOI: 10.1088/0953-4075/46/16/164017ISI: 000323113100018Scopus ID: 2-s2.0-84883144566OAI: oai:DiVA.org:kth-182306DiVA: diva2:1037200
Note

QC 20161017

Available from: 2016-10-14 Created: 2016-02-18 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kimberg, Victor
In the same journal
Journal of Physics B: Atomic, Molecular and Optical Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf