Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Review and Discussion of Failure Rate Heterogeneity in Power System Reliability Assessment
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. (Reliability Centred Asset Management (RCAM) Group)ORCID iD: 0000-0002-3543-9326
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. (Power system operation and control)ORCID iD: 0000-0003-3014-5609
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. (Reliability Centred Asset Management (RCAM) Group)ORCID iD: 0000-0002-2964-7233
2016 (English)Manuscript (preprint) (Other academic)
Abstract [en]

The failure rate is a reliability measure which isused for planning and operation of the power system. Thus far, average or experience based failure rates were applied to power system equipment due to their straightforward implementation. However, this approach limits the accuracy of the gained resultsand neglects the important differentiation between populationand individual failure rates. Hence, this paper discusses and demonstrates the necessity to distinguish between populationand individual failure rates and reviews the existing literature offailure rate estimation within the power system domain. The literature is categorized into statistical data driven approaches and failure rate modelling with focus on different criteria whichcan be used to describe the heterogeneity within populations. The review reveals that the environmental impact was modelled predominantly.

Place, publisher, year, edition, pages
2016. 1-8 p.
Keyword [en]
failure rate modelling; heterogeneity; individual failure rate; relative risk model
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-194408ISBN: 978-1-5090-1970-0 (print)OAI: oai:DiVA.org:kth-194408DiVA: diva2:1040230
Conference
Probabilistic Methods Applied to Power Systems (PMAPS), 2016 International Conference on, Beijing
Note

Submitted to 2016 International Conference on Probabilistic Methods Appliedto Power Systems, PMAPS 2016

QC 20161026

Available from: 2016-10-26 Created: 2016-10-26 Last updated: 2016-10-26Bibliographically approved
In thesis
1. Condition-based Failure Rate Modelling for Individual Components in the Power System
Open this publication in new window or tab >>Condition-based Failure Rate Modelling for Individual Components in the Power System
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The electrical power grid is one of the most important infrastructures in the modernsociety. It supplies industrial and private customers with electricity and supportsother critical infrastructures such as the water supply. Thus, it is significant that the power grid is a reliable system. However, the power system experiences a hugetransition from classical production methods such as coal and nuclear power plantsto distributed renewable energy forms such as wind energy and photovoltaic. This change to a more distributed system challenges the existing power grid as well as the traditional business models of electric utilities. Thus, cost minimization to increase profitability and improvement of the power grid to increase customer satisfactionare in the focus. One approach to increase the reliability of the grid and decrease maintenance costs is a condition-based maintenance approach which requirescondition monitoring techniques.

This thesis introduces into failure rate modelling for individual power system components and develops a method to calculate individual failure rates based onthe average failure rate, failure statistics, and condition monitoring data. This approach includes the analysis of failure statistics to identify failure causes and failure locations which are population characteristics but can be utilized to describe the heterogeneity within the population. Thus, the thesis first introduces into the topic of failure analysis and heterogeneity in populations. Different factors are identified and categorized which describe the condition development of a component overtime. Then, the literature within failure rate estimation is reviewed to present the factors which are used within failure rate modelling and to outline the existingmethods which consider the individual. However, limitations are discussed which emphasize the demand for a new approach. Consequently, this thesis introduce intoa new approach for estimating the failure rate for individual components.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 33 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2016:079
Keyword
Asset management, condition monitoring, diagnostic measures, failure rate, failure rate modeling, transformer diagnostics
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-187701 (URN)978-91-7729-031-5 (ISBN)
Presentation
2016-06-08, KTH Main Campus, Q22, Osquldas väg 6B, Stockholm, 16:08 (English)
Opponent
Supervisors
Projects
Energiforsk AB risk analysis program
Note

QC 20160526

Available from: 2016-05-26 Created: 2016-05-26 Last updated: 2016-10-26Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Jürgensen, Jan HenningNordström, LarsHilber, Patrik
By organisation
Electromagnetic Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf