Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical investigation on phase separation in polymer modified bitumen: Effect of thermal condition
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. (Highway Engineering Research Group)ORCID iD: 0000-0003-1779-1710
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. (Highway Engineering Research Group)ORCID iD: 0000-0001-7333-1140
Nynas AB.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. (Highway Engineering Research Group)
2017 (English)In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803Article in journal (Refereed) Published
Abstract [en]

With the aim to understand the effect of thermal condition on phase separation in polymer-modified bitumen (PMB), this paper numerically investigates four PMB binders under five thermal conditions between 140 and 180 °C. Based on a phase-field model previously developed by the authors for PMB phase separation, the updated model presented in this paper uses temperature-dependent parameters in order to approach the concerned temperature range, including mobility coefficients, interaction and dilution parameters. The model is implemented in a finite element software package and calibrated with the experimental observations of the four PMBs. The experimental results are well reproduced by the model, and it is thus believed that the calibrated parameters can represent the four PMBs. The simulation results indicate that the model proposed in this paper is capable of capturing the stability differences among the four PMBs and their distinct microstructures at different temperatures. Due to the transition of some PMBs from the thermodynamically stable state at 180 °C to the unstable state at 140 °C, a homogenization process may occur during the cooling applied numerically. After the transition, the PMBs start to separate into two phases and gradually form the binary structures controlled by the temperature. It is indicated that the cooling rate slightly affects the final pattern of the PMB binary microstructure, although the process can be more complicated in reality due to the potential dynamic reasons.

Place, publisher, year, edition, pages
Springer, 2017.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-195087DOI: 10.1007/s10853-017-0887-yISI: 000397817100033OAI: oai:DiVA.org:kth-195087DiVA: diva2:1044002
Note

QC 20161103

Available from: 2016-11-01 Created: 2016-11-01 Last updated: 2017-05-29Bibliographically approved
In thesis
1. Storage Stability and Phase Separation Behaviour of Polymer-Modified Bitumen: Characterization and Modelling
Open this publication in new window or tab >>Storage Stability and Phase Separation Behaviour of Polymer-Modified Bitumen: Characterization and Modelling
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Polymer-modified bitumen (PMB) is a high-performance material for road construction and maintenance. But its storage stability and phase separation behaviour are still not sufficiently understood and need to be studied toward a more successful and sustainable application of PMB. In this thesis, the equilibrium thermodynamics and phase separation dynamics of PMB are investigated with the aim at a fundamental understanding on PMB storage stability and phase separation behaviour. The development of polymer modifiers for paving bitumen is reviewed. The phase separation process in unstable PMBs is captured by fluorescence microscopy at the storage temperature (180 °C). A coupled phase-field model of diffusion and flow is developed to simulate and predict the PMB storage stability and phase separation behaviour. The temperature dependency of PMB phase separation behaviour is modelled by introducing temperature-dependent model parameters between 140 °C and 180 °C. This model is implemented in a finite element software package and calibrated with the experimental observations of real PMBs. The results indicate that storage stability and phase separation behaviour of PMB are strongly dependent on the specific combination of the base bitumen and polymer. An unstable PMB starts to separate into two phases by diffusion, because of the poor polymer-bitumen compatibility. Once the density difference between the two phases becomes sufficiently significant, gravity starts to drive the flow of the two phases and accelerates the separation in the vertical direction. The proposed model, based on the Cahn-Hilliard equation, Flory-Huggins theory and Navier-Stokes equations, is capable of capturing the stability differences among the investigated PMBs and their distinct microstructures at different temperatures. The various material parameters of the PMBs determine the differences in the phase separation behaviour in terms of stability and temperature dependency. The developed model is able to simulate and explain the resulting differences due to the material parameters. The outcome of this study may thus assist in future efforts of ensuring storage stability and sustainable application of PMB.

Abstract [sv]

Polymermodifierade bitumen (PMB) är ett högpresterande material för väganläggning och underhåll. Men PMB:s lagringsstabilitet och fassepareringsegenskaper är inte tillräckligt förstådda än och behöver studeras för en mer framgångsrik och hållbar användning av PMB. I denna avhandling studeras termodynamisk jämvikt och fasseparation av PMB med målsättning att uppnå en grundläggande förståelse av PMB:s lagringsstabilitet och fassepareringsegenskaper. Utvecklingen av polymermodifierade bitumen sammanfattas. Fasseparationsprocessen av instabil PMB:s studeras med hjälp av fluorescens mikroskopi vid lagringstemperatur (180 °C). En kopplad fas-fälts modell som beskriver diffusion och flöde har utvecklats för att simulera och förutsäga PMB:s lagringsstabilitet och fassepareringsegenskaper. Temperaturberoendet hos PMB:s fasseparation har beskrivits genom att införa temperaturberoende modellparametrar mellan 140 °C och 180 °C. Denna modell är införd i ett finit element program och kalibrerad med experimentella observationer på verkliga PMB. Resultaten indikerar att lagringsstabiliteten och fasseparationen hos PMB är starkt beroende av den specifika kombinationen av basbitumen och polymer. En instabil PMB börjar separera i två faser genom diffusion, beroende på dålig bitumen-polymer kompatibilitet. När skillnaden i densitet mellan de två faserna blir tillräckligt stor kommer gravitationen att driva flödet av de två faserna och accelerera separationen i vertikalled. Den föreslagna modellen, baserad på Cahn-Hilliards ekvation, Flory-Huggins teori och Navier-Stokes ekvation, kan beskriva stabilitetsskillnaderna mellan de undersökta PMB:erna och deras distinkta mikrostruktur vid olika temperaturer. De olika materialparametrarna hos PMB bestämmer skillnaden i fassepareringsegenskaper i termer av stabilitet och temperaturberoende. Den utvecklade modellen kan simulera och förklara de resulterande skillnaderna på grund av materialparametrarna. Resultatet av denna studie kan bidra till att säkerställa lagringsstabilitet och hållbara applikationer för PMB.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 71 p.
Series
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 143
Keyword
Polymer-modified bitumen; Storage stability; Phase separation; Fluorescence microscopy; Phase-field modelling, Polymermodifierad bitumen, Lagringsstabilitet, Fasseparation, Fluorescensmikroskopi, Fas-fälts modellering
National Category
Infrastructure Engineering
Research subject
Transport Science
Identifiers
urn:nbn:se:kth:diva-195089 (URN)978-91-7729-187-9 (ISBN)
Public defence
2016-11-22, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20161102

Available from: 2016-11-02 Created: 2016-11-01 Last updated: 2016-11-02Bibliographically approved

Open Access in DiVA

fulltext(7505 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 7505 kBChecksum SHA-512
3d6775f30f8c20844c31c3cf470c6313787e856821da5bf81f906ee1fe19eae121674ad6d9d37ce6295006a7a25c4a0316fa7f68b9e37713d329fc6b9a871b72
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhu, JiqingBalieu, RomainKringos, Niki
By organisation
Structural Engineering and Bridges
In the same journal
Journal of Materials Science
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 289 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf