Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Primordial black holes as dark matter
2016 (English)In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 94, no 8, 083504Article in journal (Refereed) Published
Abstract [en]

The possibility that the dark matter comprises primordial black holes (PBHs) is considered, with particular emphasis on the currently allowed mass windows at 10(16)-10(17) g, 10(20)-10(24) g and 1-10(3)M(circle dot) The Planck mass relics of smaller evaporating PBHs are also considered. All relevant constraints (lensing, dynamical, large-scale structure and accretion) are reviewed and various effects necessary for a precise calculation of the PBH abundance (non-Gaussianity, nonsphericity, critical collapse and merging) are accounted for. It is difficult to put all the dark matter in PBHs if their mass function is monochromatic but this is still possible if the mass function is extended, as expected in many scenarios. A novel procedure for confronting observational constraints with an extended PBH mass spectrum is therefore introduced. This applies for arbitrary constraints and a wide range of PBH formation models and allows us to identify which model-independent conclusions can be drawn from constraints over all mass ranges. We focus particularly on PBHs generated by inflation, pointing out which effects in the formation process influence the mapping from the inflationary power spectrum to the PBH mass function. We then apply our scheme to two specific inflationary models in which PBHs provide the dark matter. The possibility that the dark matter is in intermediate-mass PBHs of 1-10(3)M(circle dot) is of special interest in view of the recent detection of black-hole mergers by LIGO. The possibility of Planck relics is also intriguing but virtually untestable.

Place, publisher, year, edition, pages
American physical society , 2016. Vol. 94, no 8, 083504
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-194459DOI: 10.1103/PhysRevD.94.083504ISI: 000384609600005ScopusID: 2-s2.0-84992163208OAI: oai:DiVA.org:kth-194459DiVA: diva2:1044027
Funder
Swedish Research Council
Note

QC 20161101

Available from: 2016-11-01 Created: 2016-10-28 Last updated: 2016-11-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sandstad, Marit
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf