Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Strong Fermi level pinning induces a high rectification ratio and negative differential resistance in hydrogen bonding bridged single cytidine pair junctions
Show others and affiliations
2016 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 38, 26586-26594 p.Article in journal (Refereed) Published
Abstract [en]

We propose a high performance single molecule rectifier by sandwiching a deoxycytidine base pair between gold electrodes. The conductance of the single base pair junction can be controlled by its protonation status, with ON/OFF ratios between the protonated (pCC) and deprotonated (CC) junctions of 3-5 orders of magnitude. In the conducting pCC state, we observed a high rectification ratio of two orders of magnitude at bias voltage values around 0.1 V. This rectification ratio surpasses most of the theoretical designs for single molecular rectifiers, while the low working voltage implies significant energy efficiency. Negative differential resistance (NDR) was also witnessed in the protonated state, with a peak to valley ratio of 24. Both the rectifying and NDR effects originate from strong Fermi level pinning effects. The electronic performance offers these single base pair junctions potential applications as a unimolecular rectifier or switch with an NDR effect. The current-voltage response is unique compared with those of the reported canonical A-T and G-C pairs, and provides the possibility to be used for i-motif DNA structure recognition or sequencing. © 2016 the Owner Societies.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 18, no 38, 26586-26594 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-194602DOI: 10.1039/c6cp03141bISI: 000385175000026Scopus ID: 2-s2.0-84989822430OAI: oai:DiVA.org:kth-194602DiVA: diva2:1044113
Note

Funding Details: ZR2015BQ001, NSF, National Science Foundation. QC 20161102

Available from: 2016-11-02 Created: 2016-10-31 Last updated: 2016-11-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Luo, Yi
By organisation
Theoretical Chemistry and Biology
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf