Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards an understanding of the structural performance of future electrified roads: a finite element simulation study
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-9504-2008
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-7333-1140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-3968-6778
2017 (English)In: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268XArticle in journal (Refereed) Published
Abstract [en]

Nowadays, many novel technologies are under investigations for making our road infrastructure functionbeyond providing mobility and embrace other features that can promote the sustainability developmentof road transport sector. These new roads are often referred to as multifunctional or ‘smart’ roads. Focusin this paper is given to the structural aspects of a particular smart road solution called electrified road or‘eRoad’, which is based on enabling the inductive power transfer technology to charge electric vehiclesdynamically. Specifically, a new mechanistic-based methodology is firstly presented, using a finiteelement simulation and an advanced constitutive model for the asphalt concrete materials. Based onthis, the mechanical responses of a potential eRoad structure under typical traffic loading conditions arepredicted and analysed thoroughly. The main contributions of this paper include thus: (1) introducing anew methodology for analysing a pavement structure purely based on mechanistic principles; (2) utilisingthis methodology for the investigation of a future multifunctional road pavement structure, such as aneRoad; and (3) providing some practical guidance for an eRoad pavement design and the implementationinto practice.

Place, publisher, year, edition, pages
Taylor & Francis, 2017.
Keyword [en]
electrified roads, asphalt materials, constitutive modelling, Finite Element simulation, pavement damage
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-195591DOI: 10.1080/10298436.2017.1279487OAI: oai:DiVA.org:kth-195591DiVA: diva2:1044539
Funder
EU, FP7, Seventh Framework Programme, 605405
Note

QC 20170123

Available from: 2016-11-03 Created: 2016-11-03 Last updated: 2017-04-12Bibliographically approved
In thesis
1. Sustainable Implementation of Electrified Roads: Structural and Material Analyses
Open this publication in new window or tab >>Sustainable Implementation of Electrified Roads: Structural and Material Analyses
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Given the promise of the Inductive Power Transfer (IPT) technology for eRoad applications, the potential challenges for a successful integration of dynamic IPT technology into the physical road structure are explored extensively in this research work. The Finite Element Method (FEM) is selected for studying the structural performance of an eRoad under operational conditions. In this, an energy-based finite strain constitutive model for asphalt materials is developed and calibrated, to enable the detailed investigation of the structural response and optimization of the considered eRoad. In the context of enabling both dynamic charging and autonomous driving for future electric vehicles, the influences to the pavement (rutting) performance by the changed vehicle behaviour are investigated as well. Moreover, to study the effect on the IPT system by the integration, the potential power loss caused within eRoad pavement materials is further examined by a combined analytic and experimental analysis. The direct research goal of this Thesis is therefore to enhance the possibility of a sustainable implementation of the eRoad solutions into the real society. At the same time, it aims to demonstrate that the road structure itself is an important part of smart infrastructure systems that can either become a bottleneck or a vessel of opportunities, supporting the successful integration of these complex systems.

Abstract [sv]

Givet de förutsättningar som induktiv energiöverföring (IPT Inductive Power Transfer) har för eRoad applikationerna, utforskas möjligheterna för en framgångsrik integration av dynamisk IPT i den fysiska vägkonstruktionen på en djupgående nivå i detta forskningsarbete. Speciellt har finita elementmetoden använts för att studera det strukturella beteendet hos en e-väg under driftsmässiga förhållanden. Inom detta har en energibaserad konstitutiv model för stora töjningar utvecklats och kalibrerats för att möjliggöra detaljerade undersökningar av strukturell respons och optimering av de föreslagna e-vägarna. I samband med att möjliggöra både dynamisk laddning och autonom körning för framtida elektriska fordon, har beläggningars (spårbildnings)egenskaper studerats utifrån de laddande fordonen beteende. Dessutom för att studera effekten av IPT-systemet har den potentiella energiförlusten inom e-vägars beläggningsmaterial undersökts genom en kombinerad analytisk och experimentell undersökning. Som sådant är det direkta forskningsmålet med denna avhandling att utöka möjligheterna för en hållbar implementering av eRoad systemet inom det verkliga samhället. Samtidigt är målet att visa att vägkonstruktionen i sig själv är en viktig del av det smarta infrastruktursystemet som antingen kan bli en flaskhals eller en bärare av möjligheter, stödjande en framgångsrik implementering av dessa komplexa system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 70 p.
Series
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 144
Keyword
Electrified road; Structural performance; Constitutive modelling; Asphalt; Dielectric loss., Elektrifierade vägar; Strukturellt beteende; Konstruktivt modellerande; Asfalt; Dielektrisk förlust.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering; Transport Science
Identifiers
urn:nbn:se:kth:diva-195669 (URN)978-91-7729-193-0 (ISBN)
Public defence
2016-11-25, sal A123, Osquars backe 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20161108

Available from: 2016-11-08 Created: 2016-11-07 Last updated: 2016-11-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Chen, FengBalieu, RomainCordoba, EnriqueKringos, Niki
By organisation
Structural Engineering and Bridges
In the same journal
The international journal of pavement engineering
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 312 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf