Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermodynamics-based finite strain viscoelastic-viscoplastic model coupled with damage for asphalt material
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-9504-2008
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-7333-1140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-3968-6778
(English)Article in journal (Other academic) Submitted
Abstract [en]

A thermodynamics based thermo-viscoelastic-viscoplastic model coupled with damage using the finite strain frameworksuitable for asphalt material is proposed in this paper. A detailed procedure for model calibration and validationis presented, utilizing a set of experimental measurements such as creep-recovery, constant creep, and repeated creeprecoverytests under dierent loading conditions. The calibrated constitutive model is able to predict the sophisticatedtime- and temperature- dependent responses of asphalt material, both in tension and in compression. Moreover, a scenariocase study on permanent deformation (rutting) prediction of a practical asphalt pavement structure is presentedin this work. This paper presents the main features of this new constitutive model for asphalt: 1) A thermodynamicsbasedframework developed in the large strain context to derive the specific viscoelastic, viscoplastic and damageconstitutive equations; 2) A viscoelastic dissipation potential involving deviatoric and volumetric parts, in whichProny series representations of the Lam´e constants are used; 3) A modified Perzyna’s type viscoplastic formulationwith non-associated flow rule adopted to simulate the inelastic deformation, using a Drucker-Prager type plastic dissipationpotential; 4) A specific damage model developed for capturing the evolution disparity between tension andcompression. As such, the developed model presents a robust, fully coupled and validated constitutive framework thatincludes the major behavioral components of asphalt materials, enabling thus an optimized simulation of predictedperformance under various conditions. Further development improvements to the model in continued research eortscan be to include further environmental and physico-chemical material behavior such as ageing, healing or moistureinduced damage.

Keyword [en]
Viscoelasticity, Viscoplasticity, Damage, Thermodynamics, Asphalt material
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-195593OAI: oai:DiVA.org:kth-195593DiVA: diva2:1044547
Note

QCR 20161107

Available from: 2016-11-03 Created: 2016-11-03 Last updated: 2016-11-11Bibliographically approved
In thesis
1. Sustainable Implementation of Electrified Roads: Structural and Material Analyses
Open this publication in new window or tab >>Sustainable Implementation of Electrified Roads: Structural and Material Analyses
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Given the promise of the Inductive Power Transfer (IPT) technology for eRoad applications, the potential challenges for a successful integration of dynamic IPT technology into the physical road structure are explored extensively in this research work. The Finite Element Method (FEM) is selected for studying the structural performance of an eRoad under operational conditions. In this, an energy-based finite strain constitutive model for asphalt materials is developed and calibrated, to enable the detailed investigation of the structural response and optimization of the considered eRoad. In the context of enabling both dynamic charging and autonomous driving for future electric vehicles, the influences to the pavement (rutting) performance by the changed vehicle behaviour are investigated as well. Moreover, to study the effect on the IPT system by the integration, the potential power loss caused within eRoad pavement materials is further examined by a combined analytic and experimental analysis. The direct research goal of this Thesis is therefore to enhance the possibility of a sustainable implementation of the eRoad solutions into the real society. At the same time, it aims to demonstrate that the road structure itself is an important part of smart infrastructure systems that can either become a bottleneck or a vessel of opportunities, supporting the successful integration of these complex systems.

Abstract [sv]

Givet de förutsättningar som induktiv energiöverföring (IPT Inductive Power Transfer) har för eRoad applikationerna, utforskas möjligheterna för en framgångsrik integration av dynamisk IPT i den fysiska vägkonstruktionen på en djupgående nivå i detta forskningsarbete. Speciellt har finita elementmetoden använts för att studera det strukturella beteendet hos en e-väg under driftsmässiga förhållanden. Inom detta har en energibaserad konstitutiv model för stora töjningar utvecklats och kalibrerats för att möjliggöra detaljerade undersökningar av strukturell respons och optimering av de föreslagna e-vägarna. I samband med att möjliggöra både dynamisk laddning och autonom körning för framtida elektriska fordon, har beläggningars (spårbildnings)egenskaper studerats utifrån de laddande fordonen beteende. Dessutom för att studera effekten av IPT-systemet har den potentiella energiförlusten inom e-vägars beläggningsmaterial undersökts genom en kombinerad analytisk och experimentell undersökning. Som sådant är det direkta forskningsmålet med denna avhandling att utöka möjligheterna för en hållbar implementering av eRoad systemet inom det verkliga samhället. Samtidigt är målet att visa att vägkonstruktionen i sig själv är en viktig del av det smarta infrastruktursystemet som antingen kan bli en flaskhals eller en bärare av möjligheter, stödjande en framgångsrik implementering av dessa komplexa system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 70 p.
Series
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 144
Keyword
Electrified road; Structural performance; Constitutive modelling; Asphalt; Dielectric loss., Elektrifierade vägar; Strukturellt beteende; Konstruktivt modellerande; Asfalt; Dielektrisk förlust.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering; Transport Science
Identifiers
urn:nbn:se:kth:diva-195669 (URN)978-91-7729-193-0 (ISBN)
Public defence
2016-11-25, sal A123, Osquars backe 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20161108

Available from: 2016-11-08 Created: 2016-11-07 Last updated: 2016-11-11Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Chen, FengBalieu, RomainKringos, Niki
By organisation
Structural Engineering and Bridges
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf