Change search
ReferencesLink to record
Permanent link

Direct link
Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Biotechnology (BIO), Glycoscience.ORCID iD: 0000-0002-6656-2917
Show others and affiliations
2017 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 156, 223-234 p.Article in journal (Refereed) Published
Abstract [en]

Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position α-(1 → 3) (Xyl-3Ac) than at position α-(1 → 2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from sugarcane bagasse and straw with PAA/DMSO through the integration of results obtained from glycosidic linkage analysis, 1H NMR spectroscopy and acetyl quantification. This knowledge of the structure of xylans in sugarcane bagasse and straw will provide a better understanding of the isolation-structure-properties relationship of these biopolymers and, ultimately, create new possibilities for the use of sugarcane xylan in high-value applications, such as biochemicals and bio-based materials. © 2016 Elsevier Ltd

Place, publisher, year, edition, pages
2017. Vol. 156, 223-234 p.
Keyword [en]
1H NMR spectroscopy, Acetylated xylan, Arabinoxylan, Linkage analysis, Sugarcane bagasse, Sugarcane straw, Acetylation, Biopolymers, Characterization, Delignification, Dimethyl sulfoxide, Extraction, Light scattering, Molecular structure, Molecular weight distribution, Nuclear magnetic resonance spectroscopy, Organic solvents, Polysaccharides, Size exclusion chromatography, Arabinoxylans, H NMR spectroscopy, Sugar-cane bagasse, Bagasse
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-195116DOI: 10.1016/j.carbpol.2016.09.022ScopusID: 2-s2.0-84987851359OAI: diva2:1044810

Funding Details: 621-2014-5295, VR, Swedish Research Council. QC 20161107

Available from: 2016-11-07 Created: 2016-11-02 Last updated: 2016-11-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Morais de Carvalho, DanilaAbad, Antonio MartinezLindström, MikaelVilaplanna, FranciscoSevastyanova, Olena
By organisation
Fibre and Polymer TechnologyGlycoscienceFibre and Polymer Technology
In the same journal
Carbohydrate Polymers
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link