Change search
ReferencesLink to record
Permanent link

Direct link
Noise-reducing architecture of compressed sensing receiver for IR-UWB ranging systems
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
Show others and affiliations
2016 (English)Conference paper (Refereed)
Abstract [en]

A compressed sensing (CS) based impulse radio ultra-wideband (IR-UWB) receiver with two-path noise-reducing RF front-end architecture is proposed. By adding an identicalinput path (antenna and gain stage) together with a mixer, the noise in the received signal before feeding into the CS sampling block is alleviated comparing with the conventional CS receiver. Moreover, the mixing stage shifts the signal frequency spectrum to the lower band which eases the CS sampling hardware as well as the complexity of back-end signal reconstruction. Simulation results for a ranging system validate that the proposed CS receiver significantly outperforms the conventional one in both additive white Gaussian noise (AWGN) channel and IEEE802.15.4a multi-path channel.

Place, publisher, year, edition, pages
2016.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-195697OAI: oai:DiVA.org:kth-195697DiVA: diva2:1045090
Conference
IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB 2016)
Note

QC 20161110

Available from: 2016-11-08 Created: 2016-11-08 Last updated: 2016-11-11Bibliographically approved
In thesis
1. Sub-Nyquist Sampling Impulse Radio UWB Receivers for the Internet-of-Things
Open this publication in new window or tab >>Sub-Nyquist Sampling Impulse Radio UWB Receivers for the Internet-of-Things
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the era of Internet-of-Things, the demand for short range wireless links featured by low-power and low-cost, robust communication and high-precision positioning is growing rapidly. Impulse Radio Ultra-Wideband (IR-UWB) technology characterized by the transmission of sub-nanosecond pulses spanning up to several GHz band with extremely low power spectral density emerges as a promising candidate. Nevertheless, several challenges must be confronted in order to take the full advantage of IR-UWB technology. The most significant one lies in the reception of UWB signals. Traditional receiver requires Nyquist rate ADC which is overwhelmingly complex and power hungry. This dissertation proposes and investigates possible sub-Nyquist sampling techniques for IR-UWB receiver design.

In the first part of this dissertation, the IR-UWB receiver based on energy detection (ED) principle is explored. A low-power ED receiver featured by flexibility and multi-mode operation is proposed. The receiver prototype for 3-5 GHz band is implemented in 90 nm CMOS. Measurement results demonstrate that 16.3 mW power consumption and -79 dBm sensitivity at 10 Mb/s data rate can be achieved. To further optimize the receiver performance, threshold optimization is suggested for the on-off-keying modulated signal, and adaptive synchronization and integration region optimization is proposed. Finally, a low complexity burst packet detection scheme is proposed, which is adaptive to the variations of noise background and link distance.

In the second part of this dissertation, the IR-UWB receiver based on compressed sensing (CS) theory is investigated. Firstly, appropriate sparse basis, sensing matrix and reconstruction algorithms are suggested for the CS based IR-UWB receiver. And then, the architectural analysis of the CS receiver with focuses on the random noise processes in the CS measurement procedure is presented. At last, a novel two-path noise-reducing architecture for the CS receiver is proposed. Besides the improvement on the receiver performance, the proposed architecture also relaxes the hardware implementation of the CS random projection as well as the back-end signal reconstruction.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 79 p.
Series
TRITA-ICT, 2016:23
Keyword
Ultra-Wideband, impulse radio, receiver, energy detection, compressed sensing, sub-Nyquist sampling, Internet-of-Things
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-195816 (URN)978-91-7729-174-9 (ISBN)
Public defence
2016-12-12, Sal 205, Electrum, Kista, 09:00 (English)
Opponent
Supervisors
Note

QC 20161110

Available from: 2016-11-10 Created: 2016-11-09 Last updated: 2016-11-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Zhou, QinZou, ZhuoChen, QiangZheng, Li-Rong
By organisation
VinnExcellence Center for Intelligence in Paper and Packaging, iPACK
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link