Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydraulic forces contribute to left ventricular diastolic filling
KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.ORCID iD: 0000-0002-9654-447X
Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden..
Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden..
Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA..
Show others and affiliations
2016 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Myocardial active relaxation and restoring forces are known determinants of left ventricular (LV) diastolic function. We hypothesize the existence of an additional mechanism involved in LV filling, namely, a hydraulic force contributing to the longitudinal motion of the atrioventricular (AV) plane. A prerequisite for the presence of a net hydraulic force during diastole is that the atrial short-axis area (ASA) is smaller than the ventricular short-axis area (VSA). We aimed (a) to illustrate this mechanism in an analogous physical model, (b) to measure the ASA and VSA throughout the cardiac cycle in healthy volunteers using cardiovascular magnetic resonance imaging, and (c) to calculate the magnitude of the hydraulic force. The physical model illustrated that the anatomical difference between ASA and VSA provides the basis for generating a hydraulic force during diastole. In volunteers, VSA was greater than ASA during 75-100% of diastole. The hydraulic force was the same order of magnitude as the peak driving force of LV (1-3N vs 5-10N). Hydraulic forces are a consequence of left heart anatomy and aid LV diastolic filling. These findings suggest that the relationship between ASA and VSA, and the resulting hydraulic forces, should be considered when characterizing diastolic function and dysfunction. 

Place, publisher, year, edition, pages
2016.
National Category
Medical and Health Sciences
Research subject
Medical Technology
Identifiers
URN: urn:nbn:se:kth:diva-196532OAI: oai:DiVA.org:kth-196532DiVA: diva2:1046781
Note

QC 20161115

Available from: 2016-11-15 Created: 2016-11-15 Last updated: 2017-02-22Bibliographically approved
In thesis
1. Imaging and modeling the cardiovascular system
Open this publication in new window or tab >>Imaging and modeling the cardiovascular system
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding cardiac pumping function is crucial to guiding diagnosis, predicting outcomes of interventions, and designing medical devices that interact with the cardiovascular system.  Computer simulations of hemodynamics can show how the complex cardiovascular system is influenced by changes in single or multiple parameters and can be used to test clinical hypotheses. In addition, methods for the quantification of important markers such as elevated arterial stiffness would help reduce the morbidity and mortality related to cardiovascular disease.

The general aim of this thesis work was to improve understanding of cardiovascular physiology and develop new methods for assisting clinicians during diagnosis and follow-up of treatment in cardiovascular disease. Both computer simulations and medical imaging were used to reach this goal.

In the first study, a cardiac model based on piston-like motions of the atrioventricular plane was developed. In the second study, the presence of the anatomical basis needed to generate hydraulic forces during diastole was assessed in heathy volunteers. In the third study, a previously validated lumped-parameter model was used to quantify the contribution of arterial and cardiac changes to blood pressure during aging. In the fourth study, in-house software that measures arterial stiffness by ultrasound shear wave elastography (SWE) was developed and validated against mechanical testing.

The studies showed that longitudinal movements of the atrioventricular plane can well explain cardiac pumping and that the macroscopic geometry of the heart enables the generation of hydraulic forces that aid ventricular filling. Additionally, simulations showed that structural changes in both the heart and the arterial system contribute to the progression of blood pressure with age. Finally, the SWE technique was validated to accurately measure stiffness in arterial phantoms.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 96 p.
Series
TRITA-STH, 2016:9
Keyword
Cardiac pumping, diastolic function, hemodynamics, modeling, simulation, arterial stiffness, ultrasound, shear wave elastography.
National Category
Other Medical Engineering
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-196538 (URN)978-91-7729-192-3 (ISBN)
Public defence
2016-12-09, T2, Hälsovägen 11C, Huddinge, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2012-2800, 2012-2795VINNOVA, 2011-01365
Note

QC 20161115

Available from: 2016-11-15 Created: 2016-11-15 Last updated: 2016-11-15Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Maksuti, EliraBroomé, Michael
By organisation
Medical ImagingMedical Imaging
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf