Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. SP Process Development, Sweden.ORCID iD: 0000-0003-2410-7366
Show others and affiliations
2016 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 40, 15638-15646 p.Article in journal (Refereed) Published
Abstract [en]

The synthetic route and properties of three 2D hybrid organic/inorganic lead iodide perovskite materials are reported. The 2D perovskites were synthesized from the reaction between PbI2 and the di-cations of 1,4-diaminobutane, 1,6-diaminohexane, and 1,8-diaminooctane. The resulting products were [NH3(CH2)(4)NH3] PbI4 (BdAPbI(4)), [NH3(CH2)(6)NH3]PbI4 (HdAPbI(4)), and [NH3(CH2)(8)NH3]PbI4 (OdAPbI(4)). Structural characterization shows that two dimensional perovskite structures were formed with inorganic structural planes separated by organic layers. Absorption spectra show band gaps of 2.37 eV (BdAPbI(4)), 2.44 eV (HdAPbI(4)), and 2.55 eV (OdAPbI(4)). The 2D perovskite materials were investigated as light absorbing materials in solid state solar cells. The best performing material under moist, ambient conditions was BdAPbI4 (1.08% efficiency), which was comparable to methylammonium Pb(II) iodide (MAPbI(3)) solar cells (2.1% efficiency) manufactured and studied under analogous conditions. When compared to MAPbI(3), the 2D materials have larger band gaps and lower photoconductivity, while BdAPbI(4) based solar cells shows a comparable absorbed photon-to-current efficiency as compared to MAPbI(3) based ones.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 4, no 40, 15638-15646 p.
Keyword [en]
Organometal Halide Perovskites, Organic-Inorganic Perovskites, Optical-Properties, Phase-Transitions, Crystallization, Methylammonium, Semiconductors, Deposition, Transport, Absorber
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-196654DOI: 10.1039/c6ta05055gISI: 000386310600043Scopus ID: 2-s2.0-84992699231OAI: oai:DiVA.org:kth-196654DiVA: diva2:1047674
Funder
StandUpSwedish Energy AgencySwedish Research CouncilKnut and Alice Wallenberg Foundation
Note

QC 20161118

Available from: 2016-11-18 Created: 2016-11-17 Last updated: 2017-01-23Bibliographically approved
In thesis
1. Chemical Structure and Physical Properties of Organic-Inorganic Metal Halide Materials for Solid State Solar Cells
Open this publication in new window or tab >>Chemical Structure and Physical Properties of Organic-Inorganic Metal Halide Materials for Solid State Solar Cells
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Abstract

Methylammonium lead (II) iodide has recently attracted considerable interest which may lead to substantial developments of efficient and inexpensive industrial photovoltaics. The application of this material as a light-absorbing layer in solid-state solar cells leads to impressive efficiency of over 22% in laboratory devices. However, for industrial applications, fundamental issues regarding their thermal and moisture stability need to be addressed. MAPbI3 belongs to the perovskite family of materials with the general formula ABX3 ,where is the organic cation (methylammonium) which is reported to be a major source of instability. In this work, a variety of alkyammonium lead (II) iodide materials have been synthesized by changing the organic cation, to study the relationship between the structural and physical properties of these materials. [(A)PbI3] and (A)PbI4 series were studied. Three dimensional (3D) networks (MAPbI3,MAPbBr3), two dimensional (2D) layered systems (BdAPbI4, HdAPbI4, OdAPbI4), and one dimensional (1D) columns (EAPbI3, PAPbI3, EAPb2I6) were found for the materials. [PbI6] octahedral structural units were repeated through the material network depending on the dimensionality and connectivity of the materials. Where a bulkier cation was introduced, the crystallographic unit cell increased in size which resulted in lower symmetry crystals. The connectivity of the unit cells along the material networks was found to be based on corner-sharing and face-sharing. Lower dimensionality resulted in larger bandgaps and lower photoconductivity, and hence a lower light conversion efficiency for the related solar cells. The thermal and moisture stability was greater in the 1D and 2D materials with bulkier organic cations than with methylammonium.

In total, an overview is provided of the relationship between the chemical dimensionality and physical properties of the organic-inorganic lead halide materials with focus on the solar cell application.

Abstract [sv]

Svenska sammandrag:

Metylammoniumbly(II)jodid har under de senaste åren genererat ett stort intresse som ett möjligt material for utveckling av effektiva och på industriell skala billiga solceller. Detta material har använts som ljusabsorberande skikt i fasta solceller med imponerande omvandlingseffektiviteter på över 22% för solceller i laboratorieskala. För att denna nya typ av solceller ska bli intressanta för produktion på industriell skala, så behöver grundläggande frågeställningar kring materialens stabilitet avseende högre temperaturer och fukt klargöras. MAPbI3 har formellt perovskitstruktur med den allmänna formel ABX3, där A utgörs av den organiska katjonen (metyammoniumjonen) och som kan kopplas till materialets instabilitet. I denna avhandling har olika alkylammoniumbly(II)jodidmaterial syntetiserats där den organiska katjonen modifierats med syftet att studera växelverkan mellan struktur och fysikaliska egenskaper hos de resulterande materialen. Material av olika dimensionalitet erhölls; tredimensionella (3D) nätverk (MAPbI3, MAPbBr3), tvådimensionella (2D) skiktade strukturer (BdAPbI4, HdAPbI4, OdAPbI4), och endimensionella (1D) kedjestrukturer (EAPbI3, PAPbI3, EAPb2I6). Flera nya lågdimensionella material (2D och 1D) tillverkats och karaktäriserats för första gången. Enkristalldiffraktometri har använts för att erhålla materialens atomära struktur. Strukturen hos material tillverkade i större mängder konfirmerades genom jämförelse mellan resultat från pulverdiffraktion och enkristalldiffraktion. Den oktaedriska strukturenheten [PbI6] utgör ett återkommande tema i materialen sammankopplade till olika dimensioner. Då större organiska katjoner används karaktäriseras i regel strukturerna av större enhetsceller och lägre symmetri. De lågdimensionella materialen ger typiskt störe elektroniskt bandgap, lägre fotoinducerad ledningsförmåga och därför sämre omvandlingseffektiviteter då de används i solceller. De lågdimensionella materialen (1D och 2D) som baseras på de större organiska katjonerna uppvisar bättre stabilitet med avseende på högre tempereratur och fukt. De tvådimensionella materialens elektroniska struktur har karaktäriserats med hjälp av röntegenfotoelektronspektroskopi, liksom röntgenabsorptions- och emissionsspektroskopi. Resultat från teoretiska beräkningar stämmer väl överens med de experimentella resultaten, och de visar att materialens valensband huvudsakligen består av bidrag från atomorbitaler hos jod, medan atomorbitaler från bly främst bidrar till edningsbandet.

Sammantaget erbjuder avhandlingen en översikt av sambandet mellan kemisk dimensionalitet och fysikaliska egenskaper hos ett antal organiska/oorganiska blyhalogenidmaterial med fokus på tillämpning i solceller.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 95 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2017:4
Keyword
Perovskite, Solar cells, Organic-inorganic lead halide, Dimensionality, Bandgap, X-ray diffraction, X-ray spectroscopy.
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-199951 (URN)978-91-7729-233-3 (ISBN)
Public defence
2017-01-27, F3, Lindstedtsvägen 26, Stockholm, 13:30 (English)
Opponent
Supervisors
Funder
StandUp, B61414
Note

QC 20170123

Available from: 2017-01-23 Created: 2017-01-23 Last updated: 2017-02-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Safdari, MajidSvensson, Per H.Kloo, LarsGardner, James M.
By organisation
Applied Physical Chemistry
In the same journal
Journal of Materials Chemistry A
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf