Change search
ReferencesLink to record
Permanent link

Direct link
Numerical Study of the Application for the Divergent Reverse TurboSwirl Nozzle in the Billet Continuous Casting Process
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The swirling flow is demanded from the submerged entry nozzle (SEN) to the mold for the continuous casting process. A new design of the SEN is applied by using the reverse TurboSwirl. The TurboSwirl has been proved that it can provide a more stable flow pattern of the liquid steel in the mold. It also can supply a strong enough swirling flow compared to other swirling flow generation methods. Furthermore, a divergent nozzle is added to replace the bottom part of the straight SEN. This new divergent reverse TurboSwirl nozzle (DRTSN) could gain a more beneficial flow pattern in the mold compared to the straight nozzle. The numerical results reveals that a stronger swirling flow can be gained at the SEN outlet with a calmer flow field and active meniscus flow. It is also found that the swirl intensity in the SEN is independent of the casting speed. Lower casting speed is more desired due to a lower maximum wall shear stress. The DRTSN is connected to the tundish by an elbow and a horizontal runner. Longer horizontal runner can supply a more uniform velocity profile and symmetrical flow pattern in the mold. 

Keyword [en]
swirling flow, TurboSwirl, divergent nozzle, SEN, billet continuous casting
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-196833OAI: oai:DiVA.org:kth-196833DiVA: diva2:1049120
Note

QC 20161123

Available from: 2016-11-23 Created: 2016-11-23 Last updated: 2016-11-23Bibliographically approved
In thesis
1. A Study of the Swirling Flow Pattern when Using TurboSwirl in the Casting Process
Open this publication in new window or tab >>A Study of the Swirling Flow Pattern when Using TurboSwirl in the Casting Process
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The use of a swirling flow can provide a more uniform velocity distribution and a calmer filling condition according to previous studies of both ingot and continuous casting processes of steel. However, the existing swirling flow generation methods developed in last decades all have some limitations. Recently, a new swirling flow generator, the TurboSwirl device, was proposed. In this work, the convergent nozzle was studied with different angles. The maximum wall shear stress can be reduced by changing the convergent angle between 40º and 60º to obtain a higher swirl intensity. Also, a lower maximum axial velocity can be obtained with a smaller convergent angle. Furthermore, the maximum axial velocity and wall shear stress can also be affected by moving the location of the vertical runner. A water model experiment was carried out to verify the simulation results of the effect of the convergent angle on the swirling flow pattern. The shape of the air-core vortex in the water model experiment could only be accurately simulated by using the Reynolds Stress Model (RSM). The simulation results were also validated by the measured radial velocity in the vertical runner by the ultrasonic velocity profiler (UVP). The TurboSwirl was reversed and connected to a traditional SEN to generate the swirling flow. The periodic characteristic of the swirling flow and asymmetry flow pattern were observed in both the simulated and measured results. The detached eddy simulation (DES) turbulence model was used to catch the time-dependent flow pattern and the predicted results agree well with measured axial and tangential velocities. This new design of the SEN with the reverse TurboSwirl could provide an almost equivalent strength of the swirling flow generated by an electromagnetic swirling flow generator. It can also reduce the downward axial velocities in the center of the SEN outlet and obtain a calmer meniscus and internal flow in the mold.

Abstract [sv]

Tidigare studier visar att ett roterande flöde kan ge en mer likformig hastighetsfördelning och en lugnare fyllning i både göt- och stränggjutning av stål. De befintliga metoderna för att generera ett roterande flöde har vissa begränsningar. En ny metod för att generera det roterande flödet, en så kallad TurboSwirl, föreslogs nyligen. I detta arbete undersöktes ett konvergent munstycke med olika vinklar för att se hur detta påverkade det roterande flödet som genererades i anordningen. Resultaten visar att skjuvspänningen i systemet kan reduceras genom att ändra munstyckets vinkel mellan 40º till 60º. En lägre maximal axiell hastighet kan också uppnås med en mindre konvergent vinkel på munstycket. Det är även möjligt att påverka den maximala axiella hastigheten och skjuvspänningen i systemet genom att förflytta den vertikala kanalen i anordningen. Vattenmodellexperiment har utförts för att validera simuleringsresultaten. Det kraftigt roterande flödet kunde endast beskrivas väl av Reynolds Stress Model (RSM). Validering utfördes också genom att mäta den radiella hastigheten i den vertikala kanalen med en Ultrasonic Velocity Profiler (UVP). TurboSwirl-anordningen vändes och kopplades till gjutröret för att generera det roterande flödet. Detta studerades både med numeriska modeller och med vattenmodellering. Ett periodiskt asymmetriskt roterande flöde observerades både i numeriska modellerna och i vattenmodellerna. För att modellera detta periodiska flöde så användes detached eddy simulation (DES) modellen. Resultaten då denna modell användes stämmer väl med de experimentella mätningarna. Denna nya design med TurboSwirl kan uppnå liknande styrka på det roterande flödet som när elektromagnetisk omrörning användes. Det resulterande roterande flödet leder till en lägre axiell hastighet i gjutröret samt en lugnare yta och ett lugnare flöde i kokillen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 70 p.
Keyword
flow pattern, swirling flow, TurboSwirl, CFD, turbulence models, water model, flödesmönster, roterandeflöde, TurboSwirl, CFD, turbulensmodeller, vattenmodell
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science
Identifiers
urn:nbn:se:kth:diva-196806 (URN)978-91-7729-211-1 (ISBN)
Public defence
2016-12-16, M311, Brinellvägen 68, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20161123

Available from: 2016-11-23 Created: 2016-11-22 Last updated: 2016-11-23Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bai, HaitongErsson, MikaelJönsson, Pär G.
By organisation
Applied Process Metallurgy
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link