Change search
ReferencesLink to record
Permanent link

Direct link
Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system
Show others and affiliations
2016 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 164, 657-667 p.Article in journal (Refereed) Published
Abstract [en]

The present work is an attempt to study As and F+ coevality using laboratory based assays which couples fractionation and batch dissolution experiments. Sequential extraction procedure (SEP) resulting into five "operationally defined phases", was performed on sediment and soil samples collected from the Brahmaputra flood plains, Assam, India. High correlation between the Fe (hydr)oxide fraction and total As content of the soil/sediment sample indicates the involvement of Fe (hydr)oxides as the principal source of As. F- being an anion has high potential to be sorbed onto positively charged surfaces. Findings of the SEP were used to design the batch desorption experiments by controlling the Fe (hydr)oxide content of the soil/sediment. Desorption of As and F- was observed under acidic, neutral and alkaline pH from untreated and Fe (hydr)oxide removed samples. Highest amount of As and F- were found to be released from untreated samples under alkaline pH, while the amount leached from samples with no Fe (hydr) oxide was low. The study showed that the Fe (hydr)oxide fraction commonly found in the soils and sediments, had high affinity for negatively charged species like F- oxyanions of As, AsO43- (arsenate) and AsO33- (arsenite). Fe (hydr)oxide fraction was found to play the major role in co-evolution of As and F-. Two sorption coefficients were proposed based on easily leachable fraction and As present in the groundwater of sampling location for understanding of contamination vulnerability from the leaching.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE , 2016. Vol. 164, 657-667 p.
Keyword [en]
Co-occurrence, Sequential extraction, Desorption, Fe (hydr)oxide, Batch-desorption
National Category
Geochemistry Environmental Sciences
URN: urn:nbn:se:kth:diva-196369DOI: 10.1016/j.chemosphere.2016.08.075ISI: 000385318200077PubMedID: 27635649ScopusID: 2-s2.0-84989892962OAI: diva2:1050550

QC 20161129

Available from: 2016-11-29 Created: 2016-11-14 Last updated: 2016-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Bhattacharya, Prosun
By organisation
Sustainable development, Environmental science and Engineering
In the same journal
GeochemistryEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link