Change search
ReferencesLink to record
Permanent link

Direct link
Biomechanical changes during abdominal aortic aneurysm growth
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). Department of Biomedical Engineering, University of Technology, Eindhoven, The Netherlands.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Biomechanics.ORCID iD: 0000-0002-2749-3381
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA.
Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
Show others and affiliations
2016 (English)Report (Refereed)
Abstract [en]

The biomechanics-based Abdominal Aortic Aneurysm (AAA) rupture risk assessment has gainedconsiderable scientific and clinical momentum. However, such studies have mainly focused oninformation at a single time point, and little is known about how AAA properties change over time.Consequently, the present study explored how geometry, wall stress-related and blood flow-relatedbiomechanical properties change during AAA expansion. Four patients with a total of 23 ComputedTomography-Angiography (CT-A) scans at different time points were analyzed. At each time point,patient-specific properties were extracted from (i) the reconstructed geometry, (ii) the computedwall stress at Mean Arterial Pressure (MAP), and (iii) the computed blood flow velocity atstandardized in and out flow conditions. Testing correlations between these parameters identifiedseveral non-intuitive dependencies. Most interestingly, the Peak Wall Rupture Index (PWRI) and themaximum Wall Shear Stress (WSS) independently predicted AAA volume growth. Similarly, Intra-luminal Thrombus (ILT) volume growth depended on both the maximum WSS and the ILT volumeitself. In addition, ILT volume, ILT volume growth and maximum ILT layer thickness correlated withPWRI as well as AAA volume growth. Consequently, a large ILT volume as well as fast increase of ILTvolume over time may be a risk factor for AAA rupture. However, tailored clinical studies would berequired to test this hypothesis and to clarify whether monitoring ILT development has any clinicalbenefit.

Place, publisher, year, edition, pages
2016. , 18 p.
Keyword [en]
Aorta, AAA, Rupture Risk, Blood Flow, Wall Stress, Thrombus, ILT, Wall Shear Stress, Oscillatory Shear Index
National Category
Biomaterials Science
Research subject
Engineering Mechanics
URN: urn:nbn:se:kth:diva-197288OAI: diva2:1051124

QC 20170116

Available from: 2016-12-01 Created: 2016-12-01 Last updated: 2017-01-16Bibliographically approved
In thesis
1. Abdominal aortic aneurysm inception and evolution - A computational model
Open this publication in new window or tab >>Abdominal aortic aneurysm inception and evolution - A computational model
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Abdominal aortic aneurysm (AAA) is characterized by a bulge in the abdominal aorta. AAA development is mostly asymptomatic, but such a bulge may suddenly rupture, which is associated with a high mortality rate. Unfortunately, there is no medication that can prevent AAA from expanding or rupturing. Therefore, patients with detected AAA are monitored until treatment indication, such as maximum AAA diameter of 55 mm or expansion rate of 1 cm/year. Models of AAA development may help to understand the disease progression and to inform decision-making on a patient-specific basis. AAA growth and remodeling (G&R) models are rather complex, and before the challenge is undertaken, sound clinical validation is required.

In Paper A, an existing thick-walled model of growth and remodeling of one layer of an AAA slice has been extended to a two-layered model, which better reflects the layered structure of the vessel wall. A parameter study was performed to investigate the influence of mechanical properties and G&R parameters of such a model on the aneurysm growth.

In Paper B, the model from Paper A was extended to an organ level model of AAA growth. Furthermore, the model was incorporated into a Fluid-Solid-Growth (FSG) framework. A patient-specific geometry of the abdominal aorta is used to illustrate the model capabilities.

In Paper C, the evolution of the patient-specific biomechanical characteristics of the AAA was investigated. Four patients with five to eight Computed Tomography-Angiography (CT-A) scans at different time points were analyzed. Several non-trivial statistical correlations were found between the analyzed parameters.

In Paper D, the effect of different growth kinematics on AAA growth was investigated. The transverse isotropic in-thickness growth was the most suitable AAA growth assumption, while fully isotropic growth and transverse isotropic in-plane growth produced unrealistic results. In addition, modeling of the tissue volume change improved the wall thickness prediction, but still overestimated thinning of the wall during aneurysm expansion.

Abstract [sv]

Bukaortaaneurysm (AAA) kännetecknas av en utbuktning hos aortaväggen i buken. Tillväxt av en AAA är oftast asymtomatisk, men en sådan utbuktning kan plö̈tsligt brista, vilket har hög dödlighet. Tyvärr finns det inga mediciner som kan förhindra AAA från att expandera eller brista. Patienter med upptä̈ckt AAA hålls därför under uppsikt tills operationskrav är uppnådda, såsom maximal AAA-diameter på 55 mm eller expansionstakt på 1 cm/år. Modeller för AAA-tillväxt kan bidra till att öka förståelsen för sjukdomsförloppet och till att förbättra beslutsunderlaget på en patientspecifik basis. AAA modeller för tillväxt och strukturförändring (G&R) är ganska komplicerade och innan man tar sig an denna utmaning krävs de god klinisk validering.

I Artikel A har en befintlig tjockväggig modell för tillväxt av ett skikt av en AAA-skiva utö̈kats till en två-skiktsmodell. Denna modell återspeglar bättre den skiktade strukturen hos kärlväggen. Genom en parameterstudie undersö̈ktes påverkan av mekaniska egenskaper och G&R-parametrar hos en sådan modell för AAA-tillväxt.

I Artikel B utvidgades modellen från Artikel A till en organnivå-modell för AAA-tillväxt. Vidare inkorporerades modellen i ett “Fluid–Solid–Growth” (FSG) ramverk. En patientspecifik geometri hos bukaortan användes för att illustrera möjligheterna med modellen.

I Artikel C undersöktes utvecklingen av patientspecifika biomekaniska egenskaper hos AAA. Fyra patienter som skannats fem till åtta gånger med “Computed Tomography-Angiography” (CT-A) vid olika tillfällen analyserades. Flera icke triviala statistiska samband konstaterades mellan de analyserade parametrarna.

I Artikel D undersöktes effekten av olika tillväxt-kinematik för AAA tillväxt. En modell med transversellt-isotrop-i-tjockleken-tillväxt var den bäst lämpade för AAA tillväxt, medans antagandet om fullt-isotrop-tillväxt och transversellt-isotrop-i-planet-tillväxt producerade orimliga resultat. Dessutom gav modellering av vävnadsvolymsförändring ett förbättrat väggtjockleks resultat men en fortsatt överskattning av väggförtunningen under AAA-expansionen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 24 p.
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 0605
Aorta, Aneurysm, AAA, Blood Flow, Wall Shear Stress, Growth and Remodeling, Mixture Model, Growth Kinematics, Fluid-Solid-Growth, Aorta, Aneurysm, AAA, Blodflöde, Vägg Skjuvspänning, Tillväxt och Strukturförändring, Blandning Modell, Tillväxt Kinematik
National Category
Biomaterials Science Other Materials Engineering
Research subject
Engineering Mechanics
urn:nbn:se:kth:diva-197289 (URN)978-91-7729-216-6 (ISBN)
Public defence
2016-12-20, F3, Lindstedtsvägen 22, KTH, Stockholm, 10:00 (English)

QC 20161201

Available from: 2016-12-01 Created: 2016-12-01 Last updated: 2016-12-01Bibliographically approved

Open Access in DiVA

The full text will be freely available from 2017-06-15 10:22
Available from 2017-06-15 10:22

Search in DiVA

By author/editor
Stevens, RaoulGrytsan, AndriiGasser, T.Christian
By organisation
Solid Mechanics (Dept.)Biomechanics
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar

Total: 80 hits
ReferencesLink to record
Permanent link

Direct link